Marine bacteria cope with harsh mileu, learn to adapt

Sep 07, 2010

Marine bacteria live in a harsh mileu. They must constantly cope and adapt to changes in salinity, pH, temperature and other parameters. In her thesis, Barbara Weber, Umea University, studied how bacteria communicate with each other.

Bacteria are often found in association with marine animals, but are also free living or part of bacterial populations. Within a bacterial population communication it is vital to coordinate physiological changes in response to environmental stresses. Bacteria use a cell-to-cell signaling mechanism, termed quorum sensing, to monitor population density. Small diffusible signal molecules are secreted by one individual and received by a second individual in which they signal a specific action.

Barbara Weber concentrated her work on the marine bacterium V. anguillarum, an opportunistic pathogen that causes disease in fish, especially when the health of the animal is compromised. These bacteria use a qurom-sensing system which relies on the transfer of a phosphoryl group from one to another protein (phosphorelay). The Vibrio anguillarum utilizes the quorum sensing system to control the expression of the protein VanT. VanT is crucial for bacterial physiology and thus, it is of interest to analyze how vanT expression is regulated.

Barbara Weber identified unique features of the V. anguillarum quorum-sensing system in her work. The study shows that the protein VanU, which is crucial for the transfer of a phosphoryl group, interacts with a negative, but also a positive regulator of vanT expression.

VanT expression is also controlled by other mechanisms. First, the sigma factor RpoS activates VanT expression. Both RpoS and VanT are essential for and bacterial survival. Second, a secretion system called type VI secretion system (T6SS), which is usually associated with virulence in other pathogens, has a novel function in V. anguillarum. It works as a signal sensing mechanism that regulates rpoS and vanT expression and therefore, bacterial stress response.

Consequently, RpoS, quorum sensing and T6SS form a global network which senses stress and modulates stress response to ensure survival of the in the marine environment.

Only little information is available on the early stages of how V. anguillarum infects fish. Therefore, Barbara Weber developd an in vivo bioluminescent imaging method to analyze the infection process. Colonization of the fish skin turned out to be crucial for the disease to occur.

Explore further: New knowledge about host-virus coevolution unmasked from the genomic record

add to favorites email to friend print save as pdf

Related Stories

Evolution of virulence regulation in Staphylococcus aureus

Oct 09, 2008

Scientists have gained insight into the complex mechanisms that control bacterial pathogenesis and, as a result, have developed new theories about how independent mechanisms may have become intertwined during evolution. The ...

Recommended for you

Devising a way to count proteins as they group

55 minutes ago

A new study from Indiana University-Purdue University Indianapolis and University of California Berkeley researchers reports on an innovative theoretical methodology to solve "the counting problem," which is key to understanding ...

Mysteries of 'molecular machines' revealed

1 hour ago

"Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport ...

Bacteria are wishing you a Merry Xmas

7 hours ago

A bacterium has been used to wish people a Merry Xmas. Grown by Dr Munehiro Asally, an Assistant Professor at the University of Warwick, the letters used to spell MERRY XMAS are made of Bacillus subtilis, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.