Cobalt-controlled communication: Fine performance tuning of organometallic molecular wire

Sep 06, 2010
Cobalt-Controlled Communication Fine Performance Tuning of an Organometallic Molecular Wire by Added Dicobalt Fragments

(PhysOrg.com) -- Smaller and smarter: this is the aim of research in the quest for ever faster electronic devices smaller in size but capable of performing more complicated tasks. Devices consisting of the smallest possible components, molecular parts, have emerged as the answer.

Molecular wires, the most basic components of molecular , need to be accurately adjusted for optimal performance. Y. Tanaka, T. Koike, and M. Akita of the Chemical Resources Laboratory, Tokyo Institute of Technology, reveal the key factor for tuning wire-like performance in the Short Communication published in the European Journal of Inorganic Chemistry.

The factors affecting the communication performance of molecular devices are important for the development of . Parts of molecular electronic circuits (wires, switches, resistors, diodes, etc.) must have adjustable electronic properties to optimize this communication.

Akita et al. prepared a molecular wire containing a C≡C moiety between two iron centers. The communication between the iron centers was modified by coordination of a dicobalt cluster to the C≡C part of the wire. Fine tuning was achieved by attaching, removing, or replacing the ligands on the added cobalt system as needed, which changed the electronic properties of the Co atoms with respect to those of the Fe atoms, thus controlling the transfer of electrons between the iron centers over a path through the cobalt atoms. In contrast to the direct Fe-Fe transition mechanism for the diiron wire, the communication mechanism of the dicobalt adducts involved indirect Fe-Co-Fe electron transfer.

The mixed-valence characteristics of the compounds were studied by electrochemical and spectroscopic methods. The diiron compound belongs to Robin-Day Class III, and the dicobalt adducts have properties that place them between Class IIA and IIB. All molecular wires reported in this paper can be interconverted easily in a reversible manner.

The most important contribution of this study to the understanding of fine tuning of molecular devices is the key role played by the donor properties of the ligands attached to the cobalt fragments on the path between the two communicating iron centers. It was demonstrated that the properties of electron transfer through the could be adjusted by tailoring the of these ligands.

Explore further: A new approach to creating organic zeolites

More information: Munetaka Akita, et al. Reversible, Fine Performance Tuning of an Organometallic Molecular Wire by Additi on, Ligand Replacement and Removal of Dicobalt Fragments, European Journal of Inorganic Chemistry , 2010, No. 23, 3571-3575, dx.doi.org/10.1002/ejic.201000661

Related Stories

Single polymer chains as molecular wires

Feb 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Modeling How Electric Charges Move

Mar 13, 2008

Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for many applications, including more efficient ways of storing and using solar energy. ...

DNA-based molecular nano-wires

Jul 20, 2005

An international consortium of 7 universities and research centres are seeking an alternative to silicon-based microelectronics in using molecules of DNA, which could enable a reduction in size of the current systems by a ...

Highlight: Nanopatterning of Graphene

Mar 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, ...

Scientists discover magnetic superatoms

Jun 15, 2009

A team of Virginia Commonwealth University scientists has discovered a 'magnetic superatom' - a stable cluster of atoms that can mimic different elements of the periodic table - that one day may be used to ...

Recommended for you

A new approach to creating organic zeolites

12 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0