Better light measurement through quantum cloning

Aug 30, 2010 By Miranda Marquit feature

( -- "One of the things we have been studying is how the world works on a really small scale," Bruno Sanguinetti, a scientist at the University of Geneva in Switzerland tells "At the quantum level, the world can behave in ways that are far from our everyday experience. For example, information at the quantum level cannot be copied exactly." This is different, he continues, from the ease with which we can copy information in the classical regime.

Sanguinetti is interested in how differences between what happens in the and what happens in the world of can be used to enhance technology. “It is interesting to see how fundamental concepts can be used to develop practical applications,” he says. Among the possibilities Sanguinetti sees is the field of radiometry, measuring quantities of . “This is a common task in physics research labs, and in telecom applications,” he points out.

Along with Enrico Pomarico, Pavel Sekatski, Hugo Zbinden and Nicolas Gisin, all colleagues at the University of Geneva, Sanguinetti is exploring how fundamental differences between the quantum and classical regimes can be used to simplify radiometry. Their work is described in : “Quantum Cloning for Absolute Radiometry.”

For the past 100 years, the precise measurement of light quantities has required complex equipment and techniques only available in metrology labs. “Precision has increased, but the methods for detection have become very complicated,” Sanguinetti says. “Our system is much simpler, you could have it in your own lab, directly calibrating your equipment.”

The team at Geneva developed a device that makes use of cloned photons to perform an absolute measurement of luminous power. “We use an doped with atoms, that are excited to a state that allows them to emit light. The photons to be measured enter the fiber and stimulate the emission of other photons by the atoms. These other photons are the clones, imperfect copies of the input photons,” Sanguinetti explains.

How accurate the copies are depends on how many photons you have to begin with. With more , moving the system from the quantum regime into the classical regime, the copies become more accurate. This principle allows a good measurement of light power, without a great deal of complex equipment. “We tested our device against a detector calibrated to the best available standards. We saw that the two matched, and that told us that our experiment was good,” Sanguinetti says.

Understanding that quantum cloning takes place with increasing fidelity as the system becomes classical is the basis for this experiment. “Our results show that it is possible to measure quantities of light fairly simply,” Sanguinetti says. “This could have applications in labs, for other fundamental experiments involving light, or it could have very practical applications for measuring light in telecom fiber optics.”

“Understanding quantum cloning, has enabled us to reach a relatively high degree of precision with a simple setup,” Sanguinetti points out. “I have a great deal of hope that this will be a step in going even further towards using fundamental quantum principles in technology development.”

Explore further: New research signals big future for quantum radar

More information: Bruno Sanguinetti, Enrico Pomarico, Pavel Sekatski, Hugo Zbinden, and Nicolas Gisin, “Quantum Cloning for Absolute Radiometry,” Physical Review Letters (August 2010). Available online:
Note: This work follows up on an experiment reported by in this article on

4.3 /5 (14 votes)

Related Stories

Quantum electronics: Two photons and chips

Jan 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Shining light in quantum computing

Sep 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Controlling the interaction between light and matter

Apr 30, 2010

( -- "One of the most exciting things about this is that it gives us nice, clean control over the interaction between light and matter," William Kelly tells "Our technique has the potential to giv ...

NIST Detector Counts Photons With 99 Percent Efficiency

Apr 14, 2010

( -- Scientists at the National Institute of Standards and Technology have developed the world's most efficient single photon detector, which is able to count individual particles of light traveling ...

Recommended for you

New research signals big future for quantum radar

4 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

Top-precision optical atomic clock starts ticking

7 hours ago

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

The building blocks of the future defy logic

11 hours ago

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an ...

Physicists find a new form of quantum friction

14 hours ago

Physicists at Yale University have observed a new form of quantum friction that could serve as a basis for robust information storage in quantum computers in the future. The researchers are building upon ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.