Shining light in quantum computing

September 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Future supercomputers called quantum computers, which will surpass conventional desktop machines in some processing tasks, could encode information as photons or minute particles of light.

These photons need to be entangled as twins that are linked in time and space but physically separate.

But creating these entangled photons using current methods is expensive and inefficient.

Mr Biggerstaff is about to experiment with different entangled photon production methods using engineered crystals, mirrors, lenses and beam splitters.

“Scientists need good sources of entangled photons but one can't simply press a button and create a pair of entangled photons,” Mr Biggerstaff said.

He said entangled photons could be used as a study tool to show the potential of quantum computing and allowing completely secure messaging through unbreakable quantum encryption.

Information could be sent via single photons replacing signals sent in groups of photons or pulses along fibre optic cable.

“A quantum computer, which is for now is a theoretical and far-off device, would be able to factor very large numbers or search large databases in a much more efficient manner than any classical computer.

“Quantum computation relies on the use of entangled quantum bits or qubits.

“Classical bits can only be in the state 0 or 1, whereas qubits can be in combinations of these two fundamental states and entangled.”

He said quantum encryption was not a new secret code but it would let either communicating party know of any outside eavesdropping.

Photon production methods could also be applied to quantum teleportation or information processing schemes which had been limited by source efficiency.

The 22-year-old from St Lucia is working with UQ's Centre for Quantum Computing Technology under Professor Andrew White.

He is one of 14 Americans granted a Fulbright postgraduate award scholarship in Australia.

“I was drawn to UQ largely on the strength of Professor White`s reputation as both a creative and prolific leader in this field and as a friendly, helpful, and fun mentor to his students.”

Source: University of Queensland

Explore further: Scientists discover how to distinguish beams of entangled photons

Related Stories

Entangled LED first to operate in the telecom window

March 9, 2018

Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. ...

Scaling silicon quantum photonic technology

March 9, 2018

An international team of quantum scientists and engineers led by the University of Bristol and involving groups from China, Denmark, Spain, Germany and Poland, have realised an advanced large-scale silicon quantum photonic ...

Light controls two-atom quantum computation

February 7, 2018

Some powerful rulers of the world may dream of the possibility to get in touch with their colleagues on different continents unnoticed by friends or foes. Someday, new quantum technologies could allow for making these wishes ...

Recommended for you

Neutrons help demystify multiferroic materials

March 19, 2018

Materials used in electronic devices are typically chosen because they possess either special magnetic or special electrical properties. However, an international team of researchers using neutron scattering recently identified ...

Designing diamonds for medical imaging technologies

March 19, 2018

Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. This brings the new technology one step closer to enhancing biosensing applications, such as magnetic brain imaging. The advantages of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.