Stress protein Hsp12 provides a cellular survival mechanism never seen before

Aug 26, 2010
Hsp12 of is one of the most prominent proteins of the yeast stress response. As indicated by the graphical schemes (top) and scanning electron micrographs (bottom), Hsp12 is needed to stabilize the plasma membrane at stress conditions (left). Its absence leads to altered cell morphology and changes in membrane fluidity and stability. In the Aug. 27, 2010, issue of Molecular Cell, Welker et al. describe the cellular survival mechanism that Hsp12 provides, which they say defines an entirely new class of stress proteins. Normally unfolded within the yeast cell's aqueous cytosol, Hsp12 folds into helical structures to stabilize the cell membrane against heat shock and other kinds of stress. Credit: Martin Haslbeck, Dept. of Chemistry, Technische Universitaet Muenchen

Despite clear evidence that Hsp12 -- a so-called heat shock or stress protein -- helps cells survive life-threatening conditions, how it works was an open question until now. The surprising answer is revealed in the Aug. 27 issue of Molecular Cell, where German researchers explain how they discovered the function of Hsp12, a protective mechanism unlike any previously observed. Unfolded within the cell's aqueous cytosol, Hsp12 folds into helical structures to stabilize the cell membrane.

One way the single-celled S. cerevisiae, brewer's yeast, responds to stress is to increase production of Hsp12 several hundred times. This evidence that Hsp12 must have a protective function, together with its small molecular mass, led to its classification with other (HSPs). Yet an exhaustive investigation led by Munich-based researchers has revealed that Hsp12 is structurally and functionally different from every other stress protein that has been studied before. The scientists say that Hsp12 defines an entirely new class of stress proteins in which it stands, at least for now, alone.

"This is a new concept for protecting cells against stress," says Johannes Buchner, professor of chemistry at the Technische Universitaet Muenchen (TUM) and a member of the Munich Center for Integrated Protein Science. "This is the most abundant protein in the yeast S. cerevisiae under stress -- not only heat, but different kinds of stress -- and we found that it does not protect other proteins from unfolding or aggregation as other HSPs do. Instead, it binds to membranes and stabilizes them against rupture and leakiness."

Unlike other stress proteins, Buchner and his collaborators observed, Hsp12 is completely unfolded in its native state. They found that it exists both in solution, in the yeast cell's aqueous cytosol, and in association with the cell's outer wall, the . Its protective mechanism appears to work in the following way: As Hsp12 synthesis increases in response to stress, the higher concentration of the protein brings more of it into contact with the membrane; interacting with the membrane, Hsp12 folds, forming helical structures that become partially embedded in it. The Hsp12 helices bind to specific kinds of lipids, but evidently not in such a way as to change the membrane's composition; instead, these interactions appear to change the way the membrane is organized, enhancing its integrity and stability. The transformation of Hsp12 from its unfolded state in solution to its folded state as a membrane chaperone appears to be completely reversible.

This remarkable mechanism was uncovered step by step through a long and complex series of experiments, most of which involved "wild type" S. cerevisiae and a "knockout" strain of yeast that could not synthesize Hsp12. The interdisciplinary research team brought more than a dozen advanced analytical methods into play, as each discovery along the way raised new questions that had to be answered.

The researchers found that the cellular survival mechanism provided by Hsp12 functioned under several different kinds of assault, including heat shock, oxidative stress, and osmotic stress -- a sudden change in the solution surrounding a cell that challenges its ability to regulate the flow of water through the membrane. Results of aging experiments showed a protective function as well. The current paper in Molecular Cell also presents evidence that Hsp12 enhances the health of yeast cells under normal physiological conditions.

Further intriguing questions always grow out of discoveries in yeast, because other eukaryotes -- including humans -- share so much of this model organism's evolutionary inheritance. How highly conserved and how widely spread is the newly discovered protective mechanism of Hsp12? When did it develop, in what kind of organism? Is it unique to S. cerevisiae? If it exists in other organisms, does it function in a similar way? The Munich-based team used bioinformatic genome searches to extend their investigation in this direction, but without reaching conclusive answers. The researchers did find that the DNA sequences of other fungi code for proteins that could be considered Hsp12 "family members," and they identified one protein in human neurons that may have similar features.

Explore further: How plant cell compartments change with cell growth

More information: Sylvia Welker, Birgit Rudolph, Elke Frenzel, Franz Hagn, Gerhard Liebisch, Gerd Schmitz, Johannes Scheuring, Andreas Kerth, Alfred Blume, Sevil Weinkauf, Martin Haslbeck, and Johannes Buchner: "Hsp 12 Is an Intrinsically Unstructured Stress Protein which Folds upon Membrane Association and Modulates Membrane Function." Molecular Cell 39, 507-520, August 27, 2010. DOI 10.1016/j.molcel.2010.08.001

Provided by Technische Universitaet Muenchen

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Prion switching in response to environmental stress

Nov 25, 2008

If you have had a hard day at work, you may change your eating habits, perhaps favoring comfort food, but you don't suddenly develop the ability to eat the plate and cutlery. A new paper, published in this week's issue of ...

Unfolded proteins may protect cells from dying

Dec 26, 2006

When cells get stressed, their proteins go unfolded. It's a reaction with a straightforward name: the unfolded protein response. Now, new research from Rockefeller University shows that this phenomenon actually ...

Scientists devise method to study membrane proteins

Apr 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied ...

Recommended for you

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

Aug 22, 2014

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

Aug 22, 2014

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0