Anti-aging pathway enhances cell stress response

February 19, 2009

People everywhere are feeling the stress of a worldwide recession. Our cells, too, are under continual assault from stress.

Hidden from sight, our cells battle challenges such as their environment, bacteria, viruses, too much or too little oxygen, and physiological stressors. Molecular systems protect cells under assault, but those systems can break down, especially with age.

To better understand how cells are protected from stress and damage, a team led by Northwestern University researchers studied the effect of resveratrol, a beneficial chemical found in red wine, on human cells in tissue culture.

The findings may help explain what happens in neurodegenerative diseases, which are age-related, when cell protection fails, proteins misfold, lots of damage accumulates and the system falls apart.

The researchers discovered a new molecular relationship critical to keeping cells healthy across a long span of time: a protein called SIRT1, important for caloric restriction and lifespan and activated by resveratrol, regulates heat shock factor 1 (HSF1), keeping it active. HSF1 in turn senses the presence of damaged proteins in the cell and elevates the expression of molecular chaperones to keep a cell's proteins in a folded, functional state. Regulation of this pathway has a direct beneficial effect to cells, the research shows.

This role of SIRT1 -- a protein already of great interest to pharmaceutical companies -- was not previously known. The results will be published in the Feb. 20 issue of the journal Science.

"When SIRT1 levels are high, you are in a high-protection mode," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences. He led the research team.

"Ironically, triggering the stress response and perhaps maintaining the cell in a protective state over a long period of time can keep cells healthy," said Morimoto. "The cell is protected against an accumulation of damage when HSF1 is more active."

SIRT1 levels decrease as humans age, Morimoto explains. Cells can't respond to stress as well. This decrease in SIRT1 may help explain why protein misfolding diseases, such as Alzheimer's, Parkinson's, Huntington's and adult-onset diabetes, are diseases of aging.

"We now have a powerful way to think about addressing neurodegenerative diseases," said Morimoto. "We have identified a pathway that can be manipulated to alter lifespan. Discovering this new basis for therapeutics is very exciting."

Source: Northwestern University

Explore further: Protein may protect tumor-initiating breast cancer cells

Related Stories

Protein may protect tumor-initiating breast cancer cells

January 16, 2017

Massachusetts General Hospital investigators have identified a protein that may play an essential role in maintaining a population of tumor-initiating cells (TICs)—treatment-resistant cells responsible for cancer recurrence ...

Reducing the radioresistance of cancer

January 13, 2017

Most people recognize that many forms of cancer are treated with radiation therapy. However, some may not realize that there are cancer cells with the ability to survive this type of treatment. Oral squamous cell carcinoma ...

Recommended for you

New low-cost technique converts bulk alloys to oxide nanowires

January 19, 2017

A simple technique for producing oxide nanowires directly from bulk materials could dramatically lower the cost of producing the one-dimensional (1D) nanostructures. That could open the door for a broad range of uses in lightweight ...

Astronomers search for signs of life on Wolf 1061 exoplanet

January 19, 2017

Is there anybody out there? The question of whether Earthlings are alone in the universe has puzzled everyone from biologists and physicists to philosophers and filmmakers. It's also the driving force behind San Francisco ...

Seeking structure with metagenome sequences

January 19, 2017

For proteins, appearance matters. These important molecules largely form a cell's structures and carry out its functions: proteins control growth and influence mobility, serve as catalysts, and transport or store other molecules. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.