German researchers take a look inside molecules

Aug 20, 2010
The Juelich method makes it possible to resolve molecule structure where only a blurred cloud was visible before. Credit: Forschungszentrum Jülich

Looking at individual molecules through a microscope is part of nanotechnologists' everyday lives. However, it has so far been difficult to observe atomic structures inside organic molecules. In the renowned scientific journal Physical Review Letters, Juelich researchers explain their novel method, which enables them to take an "x-ray view" inside molecules. The method may facilitate the analysis of organic semiconductors and proteins.

For their look into the nanoworld, the Juelich researchers used a scanning tunneling . Its thin metal tip scans the specimen surface like the needle of a record player and registers the atomic irregularies and differences of approximately one nanometre (a billionth of a millimetre) with minuscule electric currents. However, even though the tip of the microscope only has the width of an atom, it has not been able so far to take a look inside molecules.

"In order to increase the sensitivity for , we put a sensor and signal transducer on the tip," says Dr. Ruslan Temirov. Both functions are fulfilled by a small molecule made up of two deuterium atoms, also called heavy hydrogen. Since it hangs from the tip and can be moved, it follow the contours of the molecule and influences the current flowing from the tip of the microscope. One of the first molecules studied by Temirov and co-workers was the perylene tetracarboxylic dianhydride compound. It consists of 26 , eight and six oxygen atoms forming seven interconnected rings. Earlier images only showed a spot with a diameter of approximately one nanometre and without any contours. Much like an X-ray image, the Juelich shows the molecule's honeycombed inner structure, which is formed by the rings.

"It's the remarkable simplicity of the method that makes it so valuable for future research," says Prof. Stefan Tautz, Director at the Institute of Bio- and Nanosystems at Forschungszentrum Juelich. The Juelich method has been filed as a patent and can easily be used with commercial scanning tunnelling microscopes. "The spatial dimensions inside molecules can now be determined within a few minutes, and the preparation of the specimen is based predominantly on standard techniques," says Tautz. In the next step, the Jülich scientists are planning to calibrate the measured current intensity as well. If they are successful, the measured current intensities may allow the type of atoms to be directly determined.

After publishing initial images produced with the new method in 2008, the research group of Tautz and Temirov has now been able to explain the quantum mechanical principle of operation of the deuterium at the tip of the microscope. Their results were supported by computer-assisted calculations by the working group of Prof. Michael Rohlfing at the University of Osnabruck. The so-called short-range Pauli repulsion is a quantum-physical force between the deuterium and the molecule which modulates the conductivity and allows us to measure the fine structures very sensitively.

The Juelich method can be used to measure the structure and charge distribution of flat molecules which can be used as organic semiconductors or as part of fast and efficient future electronic devices. Large three-dimensional biomolecules such as proteins can be examined as soon as the techniques have been refined.

Explore further: Study sheds new light on why batteries go bad

More information: The publication at Physical Review Letters: Weiss et al., Imaging Pauli repulsion in scanning tunneling microscopy, 10.1103/PhysRevLett.105.086103 (2010)

Related Stories

Scientists Image the 'Anatomy' of a Molecule (w/ Video)

Aug 28, 2009

(PhysOrg.com) -- For the first time, IBM researchers in Zurich, Switzerland, have taken a 3D image of an individual molecule. Using an atomic force microscope, the researchers constructed a "force map" of ...

New use found for tunneling microscope

Apr 23, 2007

Dutch researchers have found a new use for scanning tunneling microscopes: visualizing individual catalysts at work at a solid-liquid interface.

New, unique microscope for nanotech

Dec 09, 2005

UC Davis researchers in nanotechnology, chemistry and biology now have access to one of the most advanced microscopes of its type in the world. The new Spectral Imaging Facility, opened this fall, is a combination of an atomic ...

Researchers control chemical reactions one molecule at a time

Dec 14, 2004

Scientists at the University of California, Riverside showed that L. P. Hammett’s 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using ...

Experiments Prove Existence of Atomic Chain Anchors

Feb 03, 2005

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards ...

A New Glance on Microscopic Images

Sep 16, 2009

A doctoral student at the research center Forschungszentrum Dresden-Rossendorf (Germany) suggests interpreting the images generated by Kelvin probe force microscopy in a new way. She recently published her ...

Recommended for you

Study sheds new light on why batteries go bad

16 hours ago

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0