Seeing a Stellar Explosion in 3D (w/ Video)

Aug 04, 2010
This artist’s impression of the material around a recently exploded star, known as Supernova 1987A (or SN 1987A), is based on observations which have for the first time revealed a three dimensional view of the distribution of the expelled material. The observations were made by astronomers using ESO’s Very Large Telescope. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. This image shows the different elements present in SN 1987A: two outer rings, one inner ring and the deformed, innermost expelled material. Credit: ESO/L. Calcada

(PhysOrg.com) -- Astronomers using ESO’s Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models.

Unlike the Sun, which will die rather quietly, arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years, and because of its relative closeness, it has made it possible for astronomers to study the of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists.

SN 1987A has been a bonanza for astrophysicists. It provided several notable observational ‘firsts’, like the detection of from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material.

This video is not supported by your browser at this time.
This artist’s impression of the material around a recently exploded star, known as Supernova 1987A (or SN 1987A), is based on observations which have for the first time revealed a three dimensional view of the distribution of the expelled material.

New observations making use of a unique instrument, SINFONI, on ESO’s Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material.

This view shows that the explosion was stronger and faster in some directions than others, leading to an irregular shape with some parts stretching out further into space.

The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion.

"We have established the velocity distribution of the inner ejecta of Supernova 1987A,” says lead author Karina Kjær. “Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring.”

This video is not supported by your browser at this time.
Zoom on SN1987A. Credit: ESO

Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models.

SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova’s chaotic core simultaneously, leading to the build-up of the 3D image.

“Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas,” says Kjær. “This means that besides the normal picture we also have the velocity along the line of sight. Because we know the time that has passed since the explosion, and because the material is moving outwards freely, we can convert this velocity into a distance. This gives us a picture of the inner ejecta as seen straight on and from the side.”

Explore further: Mysterious molecules in space

More information: This research will appear in Astronomy and Astrophysics (“The 3-D Structure of SN 1987A’s inner Ejecta”, by K. Kjaer et al.). www.aanda.org/10.1051/0004-6361/201014538

Related Stories

Hubble Telescope Celebrates SN 1987A's 20th Anniversary

Feb 22, 2007

Twenty years ago, astronomers witnessed one of the brightest stellar explosions in more than 400 years. The titanic supernova, called SN 1987A, blazed with the power of 100 million suns for several months following ...

Supernova 1987A: Fast Forward to the Past

Aug 18, 2005

Recent Chandra observations have revealed new details about the fiery ring surrounding the stellar explosion that produced Supernova 1987A. The data give insight into the behavior of the doomed star in the ...

Death of a star in 3D

May 11, 2010

(PhysOrg.com) -- Researchers at the Max Planck Institute for Astrophysics in Garching have for the first time managed to reproduce the asymmetries and fast-moving iron clumps of observed supernovae by complex ...

Image: In the Constellation Cassiopeia

Jul 14, 2010

(PhysOrg.com) -- Tycho's Supernova, the red circle visible in the upper left part of the image, is SN 1572 is a remnant of a star explosion is named after the astronomer Tycho Brahe, although he was not the ...

Supernova explosions stay in shape

Dec 17, 2009

At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same.

Astronomers Find Rare Beast by New Means

Jan 27, 2010

(PhysOrg.com) -- For the first time, astronomers have found a supernova explosion with properties similiar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National ...

Recommended for you

Astronomers measure weight of galaxies, expansion of universe

2 hours ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

13 hours ago

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

Jul 28, 2014

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (1) Aug 04, 2010
Thanks for the beautiful images!

They conform that the explosion does not homogenize the supernova debris.

This is exactly what we observed in meteorites, beginning in the early 1970s ["Xenon in carbonaceous chondrites", Nature Phys. Sci. 240, 99-101 (1972); "Strange xenon, extinct superheavy elements and the solar neutrino puzzle", Science 195, 208-209 (1977); "Isotopes of tellurium, xenon and krypton in the Allende meteorite retain record of nucleosynthesis", Nature 277, 615-620 (1979)].

Chemical and isotopic variations inside the Earth and across the Solar System today were inherited directly from the parent supernova [ "Noble gas anomalies and synthesis of the chemical elements", Meteoritics 15 (1980) 117-138; "The noble gas record of the terrestrial planets", Geochemical Journal 15, 247-267 (1981); "Isotopic ratios in Jupiter confirm intra-solar diffusion",
Meteoritics and Planetary Science 33, A97, abstract 5011 (1998)].

Oliver K. Manuel