First step toward electronic DNA sequencing: Translocation through graphene nanopores

Jul 26, 2010
University of Pennsylvania researchers developed a carbon-based, nanoscale platform to electrically detect single DNA molecules. Electric fields push tiny DNA strands through atomically-thin graphene nanopores that ultimately may sequence DNA bases by their unique electrical signature. Credit: Photo: Robert Johnson, Temple University

Researchers at the University of Pennsylvania have developed a new, carbon-based nanoscale platform to electrically detect single DNA molecules.

Using electric fields, the tiny DNA strands are pushed through nanoscale-sized, atomically thin pores in a graphene nanopore platform that ultimately may be important for fast electronic sequencing of the four chemical bases of DNA based on their unique electrical signature.

The pores, burned into graphene membranes using electron beam technology, provide Penn physicists with electronic measurements of the translocation of DNA.

The article, submitted on March 25, is published in the current issue of .

"We were motivated to exploit the unique properties of graphene — a two-dimensional sheet of — in order to develop a new nanopore electrical platform that could exhibit high resolution," said Marija Drndić, associate professor in the Department of Physics and Astronomy in Penn's School of Arts and Sciences and the paper's senior author. "High resolution of graphene nanopore devices is expected because the thickness of the graphene sheet is smaller than the distance between two DNA bases. Graphene has previously been used for other electrical and mechanical devices, but up until now it has not been used for DNA translocation."

The research team had made graphene nanopores in a study completed two years ago and in this study put the pores to work.

To conduct the experiments, Drndić and postdoctoral fellow Christopher A. Merchant, together with Ken Healy, Meni Wanunu, Vishva Ray and other members from the Drndić lab made use of large-area graphene material developed by postdoctoral fellow Zhengtang Luo and Professor A.T. Charlie Johnson, both physicists at Penn. The team used a chemical vapor deposition, or CVD, method to grow large flakes of graphene and suspend them over a single micron-sized hole made in silicon nitride. An even smaller hole, the nanopore in the very center of the suspended graphene, was then drilled with an electron beam of a transmission electron microscope, or TEM.

Solid-state nanopores are proving to be invaluable tools for probing biology at the single-molecule level.

Graphene nanopore devices developed by the Penn team work in a simple manner. The pore divides two chambers of electrolyte solution and researchers apply voltage, which drives ions through the pores. Ion transport is measured as a current flowing from the voltage source. DNA molecules, inserted into the electrolyte, can be driven single file through such nanopores.

As the molecules translocate, they block the flow of ions and are detected as a drop in the measured current. Because the four DNA bases block the current differently, graphene nanopores with sub-nanometer thickness may provide a way to distinguish among bases, realizing a low-cost, high-throughput DNA sequencing technique.

In addition, to increase the robustness of graphene nanopore devices, Penn researchers also deposited an ultrathin layer, only a few atomic layers thick, of titanium oxide on the membrane which further generated a cleaner, more easily wettable surface that allows the DNA to go through it more easily. Although graphene-only nanopores can be used for translocating DNA, coating the graphene membranes with a layer of oxide consistently reduced the noise level and at the same time improved the robustness of the device.

Because of the ultrathin nature of the graphene pores, researchers were able to detect an increase in the magnitude of the translocation signals relative to previous solid state nanopores made in silicon nitride, for similar applied voltages.

The Penn team is now working on improving the overall reliability of these devices and on utilizing the conductivity of the graphene sheet to create devices with transverse electrical control over DNA transport. Specifically, this transverse electrical control may be achievable by carving graphene into nanoelectrodes and utilizing its conducting nature. Towards this goal, Michael Fischbein and Drndic have previously demonstrated nanosculpting of graphene into arbitrary structures, such as nanoribbons, nanopores and other shapes, published in Applied Physics Letters in 2008, creating a firm foundation for future research.

Explore further: 'Mind the gap' between atomically thin materials

Related Stories

DNA through graphene nanopores

Jul 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Producing graphene layers using crystallization

Mar 02, 2010

(PhysOrg.com) -- Ever since it's relatively recent discovery, graphene has generated a great deal of interest. Graphene is extracted from graphite in many cases, and consists of a sheet of carbon atoms bound together in a ...

Doping graphene

Jun 01, 2010

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Planck ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Can graphene nanoribbons replace silicon?

Feb 18, 2010

(PhysOrg.com) -- "Graphene has been the subject of intense focus and research for a few years now," Philip Kim tells PhysOrg.com. "There are researchers that feel that it is possible that graphene could replac ...

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Recommended for you

'Mind the gap' between atomically thin materials

14 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Paper electronics could make health care more accessible

Nov 19, 2014

Flexible electronic sensors based on paper—an inexpensive material—have the potential to some day cut the price of a wide range of medical tools, from helpful robots to diagnostic tests. Scientists have ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet Jul 26, 2010
Neat. And you can stack these sheets and maybe get even more precise reading by combining input from each sheet?
Star_Gazer
Jul 26, 2010
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.