'Dawning of a new age' in bacteria research

Jul 12, 2010

Lowly bacteria are turning out to be much more complex than previously thought.

In the July, 2010 issue of the journal , Loyola University Health System researchers describe an example of bacterial complexity, called "protein acetylation," which once was thought to be rare in bacteria.

This discovery that protein acetylation is common in bacteria has led to the "dawning of a new age" in bacterial research, senior author Alan Wolfe, PhD. and colleagues wrote.

Protein acetylation is a molecular reaction inside the cell. It modifies and thus affects the function of proteins, including the responsible for turning genes on or off.

Bacteria make up one of the three domains of life. The other two domains are archaea (single-cell organisms distinct from bacteria) and eukaryotes (which include plants and animals). Bacteria evolved before eukaryotes, but they are not as primitive as once thought.

"Bacteria have long been considered simple relatives of eukaryotes," Wolfe and colleagues wrote. "Obviously, this misperception must be modified."

For example, protein acetylation historically had been considered mostly a eukaryotic phenomenon. But recent research indicates that acetylation also has a broad impact on bacterial physiology.

"There is a whole process going on that we have been blind to," Wolfe said.

Wolfe's laboratory works with called Escherichia coli, commonly called E. coli. While some strains of E. coli can cause serious , most strains are harmless or even beneficial.

E. coli and its 4,000 genes have been extensively studied for decades. Consequently, researchers now have the ability to quickly determine what happens when a gene is deleted or made more active. "We're explorers with lots of tools," Wolfe said.

Studying protein will improve scientists' basic understanding of how work. This in turn could lead to to, for example, kill or cripple harmful bacteria.

"We're in the very early days of this research," Wolfe said. "We're riding the front of the wave, and that's exhilarating. The graduate students in my lab are working practically around the clock, because they know how important this is."

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Simplest bacteria unravelled at the cellular level

Dec 28, 2009

Even the simplest cell appears to be far more complex than researchers had imagined. In a series of three articles in the journal Science, researchers including Vera van Noort at the European Molecular Biology Laboratory (EMBL) ...

Magnetic nanoparticles detect and remove harmful bacteria

Nov 19, 2007

Researchers in Ohio report the development of magnetic nanoparticles that show promise for quickly detecting and eliminating E. coli, anthrax, and other harmful bacteria. In laboratory studies, the nanoparticles helped detect ...

Recommended for you

How plant cell compartments change with cell growth

18 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

18 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

19 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

19 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0