A new ultrabright source of entangled photon pairs

Jul 09, 2010
This image represents, in the top right hand corner, the new component produced in this experiment: two pillars of micrometric size are coupled to form the “photonic molecule”. The semiconductor quantum dot (of nanometric size) is inserted into one of the pillars (visible as the bright spot in the right hand pillar). The lower part of the image shows the radiation pattern of the entangled photons emitted by the component. © Jean-Louis Le Hir

At the very heart of applications such as quantum cryptography, computation and teleportation lies a fascinating phenomenon known as "entanglement". Two photons are entangled if the properties of one depend on those of the other, whatever the distance separating them. A new source of entangled photons twenty times brighter than all existing systems has been developed by a French team from the Laboratoire de Photonique et de Nano-structures (LPN) of CNRS.

This novel device is capable of considerably boosting the rate of quantum communications and constitutes a key component in future quantum logic processes. These results are published in the journal Nature on the 8 July 2010.

Take a in Paris and another in Tokyo: if they are “entangled”, they are interdependent and measuring the properties of one makes it possible to know the properties of the other instantly, whatever the distance separating them. This mysterious property, known as “”, has far reaching application potential in information fields such as , quantum computation and quantum . Normally, researchers use sources of entangled photon pairs that are easy to put in place (a laser transforming a photon into two photons of different color) but with very low brightness: less than one pulse out of 100 actually contains a pair of entangled photons, which considerably restricts the rate of any . In addition, the size of such sources means they cannot be easily integrated into microsystems.

A team from the Laboratoire de Photonique et de Nano-structures (LPN) of CNRS has developed a light source of entangled photons twenty times brighter than all existing systems. The researchers have invented a novel “photonic molecule” system in which a semiconductor quantum dot emits a pair of entangled photons per excitation pulse. This photonic molecule constitutes a trap for each of the photons of the pair and allows them to be collected efficiently. This new source operates at a rate of one pair of photons collected every 8 pulses (compared to less than one pair every 100 pulses so far).

In the long run, the researchers should be able to reach a rate close to one pair of photons per pulse. This device could make it possible to manufacture electroluminescent diodes of entangled photon pairs, with rates close to one gigahertz (in other words around on billion hertz). Moreover, the LPN scientists have also shown that the use of this “photonic molecule” concept allows the quality of the entanglement of the emitted photon pairs to be improved.

Explore further: Massive neutrinos and new standard cosmological model: No concordance yet

More information: Ultrabright source of entangled photon pairs, Adrien Dousse, Jan Suffczyński, Alexios Beveratos, Olivier Krebs, Aristide Lemaître, Isabelle Sagnes, Jacqueline Bloch, Paul Voisin & Pascale Senellart, Nature 466, 277 (2010).

add to favorites email to friend print save as pdf

Related Stories

Quantum electronics: Two photons and chips

Jan 20, 2006

Scientists at Toshiba Research Europe Limited (Cambridge, UK) believe they are on to a way of producing entangled twins of photons using a simple semiconductor electronic device. Such a chip-based source of entangled photons ...

Shining light in quantum computing

Sep 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Quantum teleportation achieved over 16 km

May 20, 2010

(PhysOrg.com) -- Scientists in China have succeeded in teleporting information between photons further than ever before. They transported quantum information over a free space distance of 16 km (10 miles), ...

JQI researchers create entangled photons from quantum dots

Nov 18, 2009

To exploit the quantum world to the fullest, a key commodity is entanglement—the spooky, distance-defying link that can form between objects such as atoms even when they are completely shielded from one another. Now, physicists ...

A solid case of entanglement

Jan 11, 2010

Physicists have finally managed to demonstrate quantum entanglement of spatially separated electrons in solid state circuitry.

Recommended for you

A new multi-bit 'spin' for MRAM storage

6 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

New study refines biological evolution model

Jul 21, 2014

Models for the evolution of life are now being developed to try and clarify the long term dynamics of an evolving system of species. Specifically, a recent model proposed by Petri Kärenlampi from the University ...

User comments : 0