Researchers Present New Sex Evolution Theory

Jul 08, 2010 By Rebecca Ruiz-McGill
UA Researchers Present New Sex Evolution Theory

(PhysOrg.com) -- Harris Bernstein and Carol Bernstein have proposed a new theory on the billion-year-old mystery of sexual reproduction evolution.

The origin of the evolutionary game - the ability of animals (including humans) and plants to reproduce sexually, genetically recombine to repair DNA, and then produce eggs, sperm or pollen - is an unresolved mystery in biology.

In an article published in the July/August issue of BioScience, University of Arizona researchers Harris Bernstein and Carol Bernstein provide insights into the early evolution of sexual organisms and the role environmental stressors had on as a key survival strategy.

The UA department of cell biology and anatomy researchers argue that eukaryotes, or cells with a nucleus, adapted their meiotic ability to recombine chromosomes sexually into new genetically distinct entities from their ancestors, called prokaryotic cells.

The ability to recombine chromosomes through meiosis gives rise to eggs and sperm in humans. According to the Bernsteins' theory, meiosis evolved to promote DNA repair, thereby greatly reducing in resulting eggs and sperm.

After the repair during meiosis, when an egg meets a sperm, the chance of having a viable fetus is much improved, and the chance that the baby will have a newly arisen is reduced.

Prokaryotic cells evolved to develop the ability to repair DNA through a process called transformation, which also promotes chromosome repair through a process called recombination.

In prokaryotic cells (which include bacteria), asexual reproduction is completed through a process called binary fission. In binary fission, each strand of the original double-stranded serves as template for the reproduction of a complementary strand as the cell readies to split into two parts.

Under certain conditions, these cells are capable of the exchange and repair of DNA through a process called transformation. Transformation is the transfer of a fragment of DNA from a donor cell to a recipient cell, followed by recombination in the recipient chromosome. The researchers call this bacterial process an early version of sex.

For eukaryotes, which include higher animals and plants as well as single-celled species such as yeast, reproduction occurs in two ways, through mitosis or meiosis.

In mitosis, one cell divides to produce two genetically identical cells. In cells committed to mitosis, if there is DNA damage, a good deal of the damage can be repaired, especially the damage on one strand of the DNA, where information on the opposite strand can direct the repair on the damaged strand of the double helical DNA.

Meiosis is required in sexual reproduction in eukaryotes. During meiosis, a cell with two copies of each chromosome, one from each parent, undergoes the process of recombination. This allows a special type of repair, not available during ordinary mitosis.

During meiotic recombination, the pairs of chromosomes line up next to each other, and if there is damage on either chromosome, repair can take place by recombination with the other chromosome. Meiotic recombination allows for the repair of damaged DNA as the from each parent are broken and joined, resulting in different combinations of genes in each chromosome.

The prevailing theory is that eukaryotes developed the ability for meiosis and sexual reproduction from their ability to reproduce through mitosis and not from their early ancestor's ability to reproduce through transformation.

"Our proposal, that the sexual process of meiosis in eukaryotes arose from the sexual process of transformation in their bacterial ancestors, is a new and fundamentally different perspective that will likely generate controversy," the researchers predict.

Harris Bernstein is a professor of cell biology and anatomy. Carol Bernstein is an associate research professor of and anatomy.

"If it is assumed that meiosis arose only after mitosis was established, there would have been an extended period (while mitosis was evolving) when there was no meiosis, and therefore no sex, in eukaryotes. This assumption appears to be contradicted by evidence that the basic machinery for meiosis was present very early in eukaryote evolution," the authors state.

A key argument in their hypothesis is that in both prokaryotes and simple eukaryotes, sexual cycles are induced by stressful conditions. Thus, the recombinational repair promoted by transformation and meiosis is part of a survival strategy in response to stress.

"Coping with DNA damage appears to be a fundamental problem for all life. For instance, the average human cell incurs about 10,000 DNA damages per day, of which 50 are double-strand breaks. The DNA damages are mostly due to the reactive oxygen species generated when converting food into energy. Thus, efficient DNA recombinational repair is an adaptation for cell survival and for producing new offspring, in higher organisms, through meiosis," the researchers contend.

In bacteria - the most common prokaryote - transformation is typically induced by high cell density, nutritional limitation, or DNA-damaging conditions. In yeast, a eukaryote or protist, the meiotic sexual cycle is induced when the supply of nutrients becomes limiting or when the cells are exposed to oxidative stress and DNA damage, the team added.

"Observations suggest that facultative sex in bacteria and protists is often an adaptive response to stressful environmental conditions, as would be expected if transformation and were related adaptations," the researchers write.

Explore further: Prehistoric conflict hastened human brain's capacity for collaboration, study says

Related Stories

Is this the beginning of the end of plant breeding?

Jun 09, 2009

No human is a clone of their parents but the same cannot be said for other living things. While your DNA is a combination of half your mother and half your father, other species do things differently. The advantage of clonal ...

Study Confirms DNA Repair Model After 26 Years

Apr 14, 2010

(PhysOrg.com) -- UC Davis researchers have confirmed a central idea about chromosome repair, more than a quarter century after it was first proposed. The finding is important to scientists who seek to understand DNA repair, ...

Protein role in meiosis re-evaluated by researchers

Apr 17, 2008

Proteins that control cell division play a far more nuanced role than researchers previously thought in the process that gives rise to reproductive cells, according to new findings by MIT biologists.

Scientists discover role for dueling RNAs

Nov 16, 2006

Researchers have found that a class of RNA molecules, previously thought to have no function, may in fact protect sex cells from self-destructing. These findings will be published in the November 17 issue of the journal Cell.

Recommended for you

Parasitic worm genomes: largest-ever dataset released

16 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

16 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

20 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Djincs
1 / 5 (1) Jul 09, 2010
Great article but scientist should think for the benefits of having two sexes, not only at molecular level. Animals like snails are hermaphrodites, they too have the benefits mentioned above, but this type of reproduction is not as successfull.
To have males organism is beneficial because females can leave ofspring much easyer than men. The males play the hardwork of choosing the best genetic combination(males fight much harder than females, and in wild species the % of males which have ofspring is lower compared to fimales), this can rapid the evolution, the evolution happens faster when the selection is higher.
For a male to has ofspring he has not only to survive, but to be better than the other males.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.