Biologists find a way to lower tumor risk in stem cell therapies

Jul 08, 2010
Biologists find a way to lower tumor risk in stem cell therapies
Mice with dysfunctional immune systems that receive human embryonic stem cells produce tumors called teratomas. Photo: Xu Lab, UC San Diego

One of the characteristics of embryonic stem cells is their ability to form unusual tumors called teratomas. These tumors, which contain a mixture of cells from a variety of tissues and organs of the body, are typically benign. But they present a major obstacle to the development of human embryonic stem cell therapies that seek to treat a variety of human ailments such as Parkinson's, diabetes, genetic blood disorders and spinal cord injuries.

Now a team of biologists at UC San Diego funded by a grant from the California Institute for Regenerative Medicine, the state's stem-cell funding agency, has discovered a way to limit the formation of teratomas.

In this week's issue of the , the researchers report that they have identified a new signaling pathway critical for unlimited self propagation of embryonic . Using small molecule compounds that inhibit this pathway, the scientists were able to dramatically reduce the potential of embryonic stem cells to form teratomas.

"Human stem cell therapy involves differentiating human embryonic stem cells into the kinds of cells needed for the treatment," said Yang Xu, a professor of biology who headed the team that published the report. "But this differentiation is never complete, meaning that the final product is a mixture of cells inevitably containing undifferentiated embryonic stem cells. So by transplanting these cells into a patient, there's clearly a risk of producing teratomas."

If researchers could halt the propagation of human embryonic stem cells during lineage-specific differentiation before they are transplanted, they could avoid the risk of producing teratomas.

"This is a proof of concept to show how we can avoid teratomas in human embryonic stem cell therapies by studying the basic biology of these cells," said Xu. "At this point, we only see a significant but partial effect because we are targeting only one pathway. Once we identify more pathways required for teratoma formation by , we might be able to completely suppress the formation of teratomas by targeting multiple pathways simultaneously."

Explore further: Scientists find key to te first cell differentiation in mammals

Related Stories

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

Research helps identify memory molecules

15 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

16 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

16 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0