A New Type of Molecule

Jun 21, 2010
A schematic drawing of a new type of molecule with relatively gigantic dimensions, designed in theory by CfA scientists. The new molecule could be made in ultra-cold situations when a normal molecule is bound to an atom in a large excited state, for example as shown here with potassium-rubidium (KRb; the blue and green spots) joined to an excited large atom of rubidium (the red spot and gray electron cloud). Credit: S. Rittenhouse and H. Sadeghpour

(PhysOrg.com) -- A Rydberg atom is one with an electron that spends most of its time far from the nucleus. Rydberg atoms, which are normally artificially produced, can have dimensions thousands of times larger than typical atoms or simple molecules.

Because these giants push the envelope of our understanding of atomic physics they are interesting in their own right, but scientists also wonder whether their extreme properties might be useful.

Two CfA scientists, Seth Rittenhouse and Hossein Sadeghpour, used the known properties of Rydberg atoms to "invent," theoretically, a new kind of gargantuan molecule and to predict its properties.

They paired a giant rubidium Rydberg atom with a normal molecule of potassium-rubidium. Like most , the potassium-rubidium molecule has a slight internal charge separation induced by the different charges in its two nuclei.

That charge structure enabled the scientists to show that it should bind to the Rydberg atom to produce a molecule even larger than the giant atom.

Moreover, this amazing new form of matter should have an internal structure that retains information about the charge separation of both the Rydberg atom and its molecular partner, a property that could be useful in making a quantum "bit" that might someday be used in quantum computers.

Although this invention now needs to be realized in a laboratory, the research has already demonstrated that a new class of molecules might in principle result from combining giant in carefully tailored configurations.

Explore further: First in-situ images of void collapse in explosives

Related Stories

Scientists discover giant Rydberg atom molecules

Jun 24, 2009

A group of University of Oklahoma researchers led by Dr. James P. Shaffer, Homer L. Dodge Department of Physics and Astronomy, have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining ...

Giant Rydberg atoms confined in a micro-glass cell

Jan 14, 2010

Rydberg atoms are highly sensitive atoms, as one electron is only loosely bound. Compared to 'normal' atoms which are one tenth of a nanometer in size those giant atoms are ~100 nanometers large. Due to their sensitivity ...

Recommended for you

First in-situ images of void collapse in explosives

8 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0