Tapping into sorghum's weed-fighting capabilities to give growers more options

Jun 15, 2010

By unlocking the genetic secrets of sorghum, Agricultural Research Service (ARS) scientists have found a way to make one of the world's most important cereal crops a better option for growers. Researchers at the ARS Natural Products Utilization Unit in Oxford, Miss. also may have opened a door to reducing pesticide use in the production of other crops.

Sorghum secretes a compound known as sorgoleone that is instrumental in helping the plant combat weeds. But in a way it does its job too well. Certain crops don't grow well in fields where has been raised, causing problems for growers who want to plant different crops on those fields.

The research team at Oxford included molecular biologist Scott Baerson, chemist Agnes Rimando, research leader Stephen O. Duke, plant physiologist Franck E. Dayan, Zhiqiang Pan, and plant physiologist Daniel Cook, who now works at the ARS Poisonous Plant Research Laboratory in Logan, Utah.

The team started with two pieces of evidence that helped them address the problem. Previous studies showed that sorgoleone is produced in the hairs, and that a special type of enzyme within the plant plays a major role in sorgoleone production.

Using a strategy called sequence tagging, the scientists searched an established sorghum genome database for associated with that class of enzymes. They found two gene sequences expressed in the plant root that produced the enzymes. When they silenced the two gene sequences, it dramatically reduced sorgoleone levels in the sorghum plants produced.

The results, published in The Plant Cell, could lead to sorghum lines without the soil toxicity problem, as well as lines with higher levels of sorgoleone that offer superior weed-fighting capabilities without posing environmental hazards.

This discovery will enable researchers to look for similar gene sequences in other crops to increase their natural pest-fighting capabilities and reduce the need for pesticides. Baerson and his colleagues have already identified similar sequences in rice that are involved in production of defense-related enzymes.

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

Provided by United States Department of Agriculture

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Cloned sorghum is aluminum tolerant

Feb 23, 2010

(PhysOrg.com) -- Leon Kochian and colleagues have cloned a unique sorghum gene that is being used to develop sorghum lines that can withstand toxic levels of aluminum in the soil, a consequence of acidic soils.

Forage sorghum shows promise as energy crop

Mar 30, 2010

(PhysOrg.com) -- In their continuing effort to evaluate crops that can serve as biofuel feedstocks as well as cover crops (and that can fit into crop rotations in Pennsylvania and the Northeast) researchers ...

Recommended for you

Quest to unravel mysteries of our gene network

6 hours ago

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

7 hours ago

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.