Could life survive on Mars? Yes, microbiologist says

Jun 04, 2010
This is Lost Hammer Spring on Axel Heiberg Island, Nunavut Territory, Canada. Credit: Dept. Natural Resource Sciences, McGill University, Montreal.

Researchers at McGill's department of natural resources, the National Research Council of Canada, the University of Toronto and the SETI Institute have discovered that methane-eating bacteria survive in a highly unique spring located on Axel Heiberg Island in Canada's extreme North. Dr. Lyle Whyte, McGill University microbiologist explains that the Lost Hammer spring supports microbial life, that the spring is similar to possible past or present springs on Mars, and that therefore they too could support life.

The subzero water is so salty that it doesn't freeze despite the cold, and it has no consumable oxygen in it. There are, however, big bubbles of methane that come to the surface, which had provoked the researchers' curiosity as to whether the gas was being produced geologically or biologically and whether anything could survive in this extreme hypersaline subzero environment. "We were surprised that we did not find methanogenic bacteria that produce methane at Lost Hammer," Whyte said, "but we did find other very unique anaerobic organisms - organisms that survive by essentially eating methane and probably breathing sulfate instead of oxygen."

It has been very recently discovered that there is methane and frozen water on Mars. Photos taken by the Mars Orbiter show the formation of new gullies, but no one knows what is forming them. One answer is that there could be that there are springs like Lost Hammer on Mars. "The point of the research is that it doesn't matter where the methane is coming from," Whyte explained. "If you have a situation where you have very cold , it could potentially support a microbial community, even in that extreme harsh environment."

Axel Heiberg Island, part of Nunavut Territory, Canada, is uninhabited except for the McGIll Arctic Research Station. Coordinates: 79° 26’ 0” N, 90° 46’ 0” W. Area: 16,671 square miles. Highest point: Outlook Peak (7,300 feet). Landmarks: Fossil Forest, Thompson Glacier, White Glacier, McGill Arctic Research Station, perennial springs. Credit: Map by Jason Smith. ©2009 Endeavors magazine.

While Axel Heiberg is already an inhospitable place, the Lost Hammer spring is even more so. "There are places on Mars where the temperature reaches relatively warm -10 to 0 degrees and perhaps even above 0ºC," Whyte said, "and on Axel Heiberg it gets down to -50, easy. The Lost Hammer spring is the most extreme subzero and salty environment we've found. This site also provides a model of how a methane seep could form in a frozen world like , providing a potential mechanism for the recently discovered Martian plumes."

The research was published in the International Society for Microbial Ecology Journal.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

Related Stories

Just How Significant Is Methane On Titan?

Sep 12, 2005

Titan's second most abundant constituent, methane, is critical to the maintenance of an earth-like nitrogen atmosphere on this satellite. Without methane, Titan's nitrogen would condense, leaving behind a puny amount in ...

Methane Formation in the Oceans: New Pathway Discovered

Jul 10, 2008

(PhysOrg.com) -- A new pathway for methane formation in the oceans has been discovered, with significant potential for advancing our understanding of greenhouse gas production on Earth, scientists believe.

Tooling up ExoMars

Jan 18, 2010

(PhysOrg.com) -- ESA and NASA are inviting scientists from across the world to propose instruments for their joint Mars mission, the ExoMars Trace Gas Orbiter. Scheduled for launch in 2016, the spacecraft ...

Is Methane The First Direct Sign Of Extra-Terrestrial Life?

Aug 09, 2005

Are microbes making the methane that's been found on Mars, or does the hydrocarbon gas come from geological processes? It's the question that everybody wants to answer, but nobody can. What will it take to convince the ...

Paired microbes eliminate methane using sulfur pathway

Jan 17, 2008

Anaerobic microbes in the Earth's oceans consume 90 percent of the methane produced by methane hydrates – methane trapped in ice – preventing large amounts of methane from reaching the atmosphere. Researchers now have ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0