Single-molecule manipulation for the masses

Jun 02, 2010
This is a picture of the Centrifuge Force Microscope with inventors Drs. Wesley Wong and Ken Halvorsen. Credit: Dr. Wesley Wong

Scientists have developed a new massively-parallel approach for manipulating single DNA and protein molecules and studying their interactions under force. The finding appears in the June 2 issue of Biophysical Journal.

The team of researchers from the Rowland Institute at Harvard University claim that their technique, which they call "single molecule centrifugation", offers dramatic improvements in throughput and cost compared with more established techniques.

"By combining a microscope and a centrifuge, forces can be applied to many molecules at once while simultaneously observing their nano-to-microscale motions," explains author Wesley P. Wong, a Principal Investigator at Rowland.

Recent technologies such as optical and magnetic tweezers and the (AFM) have enabled the mechanical manipulation of single molecules, leading to new insights in ranging from to blood clotting.

However, the tools used to perform these experiments are often expensive and can be tedious and complicated to use, limiting their use among scientists.

The Harvard researchers aimed to solve these problems by developing an instrument they call the Centrifuge Force Microscope (CFM), which uses centrifugal force to manipulate molecules.

This is the Centrifuge Force Micoscope in action. Credit: Dr. Wesley Wong

Developing the instrument involved miniaturizing a and safely rotating it at high speeds while maintaining precision and control.

Experiments involve tethering thousands of micron-sized "carrier" particles to a surface and observing their motion as the sample rotates to generate the centrifugal force.

"We're really excited about this new method," says co-author Ken Halvorsen, a postdoctoral fellow. "After doing tedious single-molecule experiments for years, we thought there had to be a better way. Now, instead of doing one experiment thousands of times we can do thousands of experiments at once."

The scientists expect that the relative low cost and simplicity of the method will attract researchers who may be intimidated by the cost and technical skills required for other methods, ultimately enabling new discoveries in both health and basic science research.

Explore further: Study sheds new light on why batteries go bad

Related Stories

Researchers solve 'bloodcurdling' mystery

Jun 04, 2009

By applying cutting-edge techniques in single-molecule manipulation, researchers at Harvard University have uncovered a fundamental feedback mechanism that the body uses to regulate the clotting of blood. The finding, which ...

Simple twists of fate

Sep 30, 2008

A novel Brandeis University study this week in PLoS Biology reports on some of the molecular gymnastics performed by a protein involved in regulating DNA transcription. Using state-of-the art tools, researchers observed the sh ...

New, unique microscope for nanotech

Dec 09, 2005

UC Davis researchers in nanotechnology, chemistry and biology now have access to one of the most advanced microscopes of its type in the world. The new Spectral Imaging Facility, opened this fall, is a combination of an atomic ...

Recommended for you

Study sheds new light on why batteries go bad

11 hours ago

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0