Microbes answer more questions collectively

May 26, 2010

Studying whole microbial communities rather than individual micro-organisms could help scientists answer fundamental questions such as how ecosystems respond to climate change or pollution, says Dr Jack Gilbert writing in the May issue of Microbiology Today.

Marine microbes are responsible for 99% of the cycling of the world's gases and nutrients and 50% of the world's primary productivity. "Given the vital role of ocean microbes in maintaining life, getting to grips with the impact of such as increasing ocean acidity on them is extremely important," explained Dr Gilbert who works at the Plymouth Marine Laboratory.

To realistically assess the environmental impact on microbial communities, all the interactions between different organisms within an ecosystem must be taken into consideration. "This is not possible by simply examining changes in of individual microbial cells, which is the traditional approach. We need to look at gene expression of a whole community at once," suggested Dr Gilbert.

Dr Gilbert's group studied how populations of microbes in the North Sea responded to increased acidity by bubbling carbon dioxide through and monitoring the change in gene expression of the whole microbial population. The group found an overall increase in genes that would help cells to maintain a constant pH inside the cell under stressful conditions. "This clearly demonstrated that the system was sensitive to change and was able to respond to it accordingly".

The team is planning on repeating the same experiment in the Arctic Ocean. " are more fragile in the and by comparing the results we can work out whether the impact of ocean acidification will actually threaten the function of these communities," explained Dr Gilbert. "This kind of research will help us discover how our actions will affect the functioning of an ecosystem. This is vital if we are to act as responsible stewards of the Earth's natural resources," he said.

Explore further: Molecular gate that could keep cancer cells locked up

Provided by Society for General Microbiology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Food source threatened by carbon dioxide

Dec 10, 2007

Carbon dioxide increasing in the atmosphere may affect the microbial life in the sea, which could have an impact on a major food source, warned Dr Ian Joint at a Science Media Centre press briefing today.

Bigelow laboratory scientists doach to study marine microbes

May 21, 2007

In a paper published this month in the Proceedings of the National Academy of Sciences, Dr. Ramunas Stepanauskas and Dr. Michael Sieracki have proven a new method of identifying genetic codes of ocean microbes from a sing ...

MIT reels in RNA surprise with microbial ocean catch

May 13, 2009

An ingenious new method of obtaining marine microbe samples while preserving the microbes' natural gene expression has yielded an unexpected boon: the presence of many varieties of small RNAs — snippets of RNA that act ...

New Window Opens on the Secret Life of Microbes

Mar 13, 2008

Nowhere is the principle of "strength in numbers" more apparent than in the collective power of microbes: despite their simplicity, these one-cell organisms -- which number about 5 million trillion trillion ...

Recommended for you

Molecular gate that could keep cancer cells locked up

9 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

13 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0