Mapping Tumor Heterogeneity With Quantum Dots

May 25, 2010

(PhysOrg.com) -- One important discovery made about cancer over the past decade is that as a tumor develops, the molecular identity of its cells begins to diverge. As a result, any given tumor is likely to contain groups of cells with differing genetic makeup, growth rates, and more importantly, susceptibility to specific drug therapies.

Now, using a mixture of four quantum dots linked to antibodies that can detect cancer-associated proteins, a research team from Emory University has developed a method for mapping the molecular heterogeneity of human prostate tumor biopsies obtained from cancer patients. This method should be applicable to other types of tumors.

Shuming Nie, the principal investigator of the Emory University and Georgia Institute of Technology Center of Cancer Nanotechnology Excellence, led the research team that developed this new method of characterizing tumor biopsies. The investigators reported their work in the journal ACS Nano.

Dr. Nie and his team chose four proteins to target using . To each antibody, they linked a quantum dot—a brightly fluorescent nanoparticle—that emits light with a unique optical signature. After staining human with the four antibody-quantum dot constructs, the researchers used a commercial multispectral imaging system to acquire fluorescence images of the tissue. They then analyzed the raw spectral data with a capable of sorting out the four optical signatures and creating a map of the locations where each of the four quantum dots accumulated on the tumor samples. These maps revealed complex microenvironments within tumors and identified major differences across biopsies from multiple patients.

These maps also pinpointed areas of the prostate gland undergoing structural changes characteristic of healthy tissue becoming malignant. In fact, the investigators note that their work shows that the architectural changes that occur in prostate cancer likely start with a single malignant cell in regions of the prostate gland known as the luminal and basal layers.

This work, which is detailed in a paper titled, "Molecular Mapping of Tumor Heterogeneity on Clinical Tissue Specimens with Multiplexed ,” was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of . An abstract of this paper is available at the journal's Web site.

Explore further: Experts cautious over Google nanoparticle project

Related Stories

Evaluating Multiple Biomarkers With Quantum Dots

May 22, 2007

Quantum dots linked to biological molecules, such as antibodies, have shown promise as a new tool for detecting and quantifying a wide variety of cancer-associated molecules. Now, thanks to detailed studies of how to make ...

Nanosize Rods Light Up Pancreatic Cancer Cells

Apr 18, 2008

Quantum dots have shown promise as ultrabright contrast agents for use in a variety of cancer imaging studies. Now, a team of investigators at the Multifunctional Nanoparticles in Diagnosis and Therapy of Pancreatic Cancer ...

Nanoparticles Provide Detailed View Inside Living Animals

Apr 18, 2008

Using nanoparticles designed specifically to produce a bright Raman spectroscopic signal, a team of investigators at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (Stanford CCNE) has shown that ...

Coated Ultrasmall Quantum Dots Suitable for In Vivo Imaging

Dec 03, 2007

Quantum dots have shown promise in a variety of imaging and therapeutic applications, particularly when they are coated to render them biocompatible. However, such coating can increase the size of quantum dots signficantly, ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.