Scientists ID Bacterial Genes that Improve Plant Growth

May 13, 2010
Bacteria living within poplar roots.

You might think bacteria that "invade" trees are there to cause certain destruction. But like the helpful bacteria that live within our guts, some microbes help plants thrive. To find out what makes these microbe-plant interactions "tick," scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory decoded the genome of a plant-dwelling microbe they'd previously shown could increase plant growth by 40 percent. Their studies, described online in PLoS Genetics, identified a wide range of genes that help explain this symbiotic success story. The work could move the approach of using bacteria as growth-promoting agents one step closer to implementation for improved agriculture and biofuel production.

"To fuel and feed the planet for the future, we need new approaches," said Brookhaven scientist Safiyh Taghavi, the study's lead author. "Biofuels derived from plants are an attractive alternative energy source, but many biofuel feedstock crops are in direct competition with food crops for agricultural resources such as land, water, and fertilizers. Our research is looking for ways to improve the growth of biofuel feedstock plants on land that cannot be economically used for food production. What we learn might also be put to use to increase the productivity of food crops," she added.

The Brookhaven team has been studying a species of bacteria isolated from the roots of poplar trees. "Poplar is a model species for biofuel production, in part because of its ability to grow on marginal soils unsuitable for ," said scientist Daniel (Niels) van der Lelie, who leads the research program. Previous studies by the van der Lelie-Taghavi group have shown that the Enterobacter (sp. 638) increases poplar growth by as much as 40 percent.

In the current study — through genome sequencing performed at DOE's Joint Genome Institute, manual genome annotation in collaboration with Brookhaven biologist Sebastien Monchy, and metabolic analyses performed at the University of South Carolina in collaboration with Brookhaven plant scientist Lee Newman — the scientists identified an extended set of that help Enterobacter (sp. 638) establish itself in this niche. The studies also revealed remarkable interactions between the microbe and its host that help the plant survive and thrive.

This video is not supported by your browser at this time.
Audio of interview with Niels van der Lelie

Among the bacterial genes identified are ones that code for proteins that: help the microbe survive and compete with other species for resources in the soil; take up nutrients released by plant roots; and move toward, adhere to, and colonize poplar root tissues. The microbes also have genes that provide benefits for the plant, including: genes that may help confer drought resistance and the ability to coexist with toxic metals; genes that produce antimicrobial agents that protect plants from fungal and bacterial infections; and genes that produce plant-growth enhancing "phytohormones" and precursors that poplar cannot produce on its own.

"One of the most remarkable things about this association, which we confirmed with our metabolic assays, is that the production of these plant-growth-promoting phytohormones is directly dependent on the presence of plant-synthesized sugars, such as sucrose, in the growth medium. In addition, one metabolite (meso-2,3 butanediol) is known to elicit the induction of systemic tolerance to drought and induced systemic resistance against plant diseases," Taghavi said. So the plant makes sugar that helps the bacteria grow and make phytohormones and other compounds that help the grow better and healthier.

"Interestingly, the genes that allow the bacteria to metabolize sucrose and the genes that produce the phytohormones are located on a genomic island, suggesting they may have been acquired together via natural horizontal gene transfer," Taghavi said.

The scientists plan to continue their work by studying how these various genes are expressed during different stages of bacterial colonization of poplar. These detailed studies will further advance the scientists' understanding of the complex interactions, including the role of signaling compounds and other secondary metabolites that play a role in colonization and plant-growth promotion.

"These basic findings can eventually be translated into comprehensive strategies to exploit the use of these naturally occurring bacteria-plant relationships to improve plant establishment and biomass production. This approach can be applied to improve plant productivity for sustainable agriculture, bioenergy feedstock production on marginal lands, or to fight desertification of arid areas," van der Lelie said.

Explore further: New insights into how different tissues establish their biological and functional identities

Related Stories

Scientists Identify Bacteria That Increase Plant Growth

Jan 26, 2009

(PhysOrg.com) -- Through work originally designed to remove contaminants from soil, scientists at the U.S. Department of Energy's Brookhaven National Laboratory and their Belgium colleagues at Hasselt University ...

Plant microbe shares features with drug-resistant pathogen

Jun 16, 2009

An international team of scientists has discovered extensive similarities between a strain of bacteria commonly associated with plants and one increasingly linked to opportunistic infections in hospital patients. The findings ...

Plant Gene Mapping May Lead to Better Biofuel Production

Apr 13, 2009

(PhysOrg.com) -- By creating a 'family tree' of genes expressed in one form of woody plant and a less woody, herbaceous species, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory ...

Gene discovery to increase biomass needed for green fuel

Feb 10, 2010

(PhysOrg.com) -- Manchester scientists have identified the genes that make plants grow fatter and plan to use their research to increase plant biomass in trees and other species - thus helping meet the need ...

Seeking a More 'Poplar' Biofuel

Feb 25, 2010

(PhysOrg.com) -- Gas money for your car doesn't grow on trees, but one day you might be filling up with fuel that does.

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Jimee
not rated yet May 18, 2010
Hopefully, research in this area will enable us to wean ourselves from phosphate fertilizers.
Djincs
not rated yet May 20, 2010
the poplar grows really fast I can tell this from my own observation, there is lots of thinks to take from bacterias, one of them is the ability for using N2 from the atmosphere, some been plants use this, but it will be good if this genes is taken and included in the crops, this will decreas the use of nitrates in the agriculture, allso if man can take the dna which encode the enzimes whish can break down the celuloze and make the planteaters independent of bacterias in their stomach, this can impruve the producivity of the animals, gmo is not that bad at all...

More news stories

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...