New Amplifier Pushes the Boundary of Quantum Physics

May 05, 2010
Michel Devoret, left, and Rob Schoelkopf conduct a quantum circuit experiment in lab at Yale. Devoret and Schoelkopf are authors of paper published in the journal Nature that describes new way to amplify signals in quantum computers.

(PhysOrg.com) -- If powerful new quantum computers are to reach their enormous potential, they will need amplifiers capable of transmitting signals so weak they consist of a single photon. In the May 6 edition of the journal Nature, a team of Yale scientists report creating an amplifier almost as efficient as the laws of quantum physics allow.

Quantum computers, like cell phones, depend upon sophisticated microwave amplifiers to ensure that information is accurately retrieved. However, all amplifiers contain inherent flaws - most notably flaws which produce random noise that can obscure the signal. In , the Heisenberg uncertainty principle dictates that a small amount of noise is inevitable, no matter how good the amplifier.

“If you want take information out of the computer, you will have to amplify very weak signals,” said Michel Devoret, Frederick William Beinecke Professor of Physics and Applied Physics at Yale’s School of Engineering & Applied Science and senior author of the paper. “The aim of our research is to devise an amplifier for signals so tiny they have only one photon in them.”

“Michel and his team have developed a new design for a practical using superconducting electrical circuits at cryogenic temperatures that comes very close to the ideal limit of this minimum amount of added noise,” said Steven M. Girvin, deputy provost for science and technology, the Eugene Higgins Professor of Physics & Applied Physics at Yale’s School of Engineering & Applied Science and a co-author of the work.

The Yale effort to build a quantum computer based on superconducting electrical circuits relies on incredibly weak microwave signals to both control and measure the quantum state of the computer. The typical signal power that must be measured is on the order of one billionth of one billionth of a watt, equivalent to the power of a cell phone call signal received on the moon from someone on earth.

Other Yale authors on the paper are: Nicola Bergeal, Flavius Schackert, Michael Metcalfe, R. Vijay, Vladimir Manucharyan, Luigi Frunzio, Daniel Prober, and Robert Schoelkopf.

Researchers at the University of Maryland and the University California, Berkeley also contributed to the paper.

Explore further: Theory of the strong interaction verified

More information: Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature, 465, 64-68 (06 May 2010) doi:10.1038/nature09035

add to favorites email to friend print save as pdf

Related Stories

Yale scientists bring quantum optics to a microchip

Sep 08, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which ...

Recommended for you

First glimpse inside a macroscopic quantum state

4 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

17 hours ago

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

Quantum correlation can imply causation (Update)

Mar 23, 2015

Does taking a drug and then getting better mean that the drug made you better? Did that tax cut really stimulate the economy or did it recover on its own? The problem of answering such questions - of inferring ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.