Affordable Fuel Cells May Get Boost From Artificial Diamonds

Apr 27, 2010
Affordable Fuel Cells May Get Boost From Artificial Diamonds
Oxygen (red spheres) migrates from one vacancy to another inside the scandia-doped cubic zirconia. The cations the oxygen must brush past are marked by the letter E.

( -- Using specialized cubic zirconia or artificial diamonds, scientists from Nanjing Normal University in China and Pacific Northwest National Laboratory designed a membrane that could allow solid oxide fuel cells to operate at lower temperatures and reduce our dependence on fossil fuels. This new membrane, created by adding scandium to cubic zirconia, passes oxygen faster and at temperatures far lower than the more common yttria-stabilized zirconia.

Affordable fuel cells could reduce the need for imported oil. However, solid oxide fuel cells currently don't fit the budget of most homeowners. The cost is tied to the internal temperature of the cell, around 1000 degrees Celsius. This temperature means the cell must be built using very durable, very expensive ceramics. Lower temperatures mean the cells could be built from stainless steel and other less expensive materials. The trick to dropping the temperature, and thus the cost, is the membrane or solid electrolyte that quickly passes oxygen from one side of the cell to the other.

In this study, the team investigated why some materials are better than others at passing oxygen along. "We could take an Edisonian approach—trying 10,000 materials, but it would be expensive, and we'd be here forever," said Dr. Ram Devanathan, a materials scientist at PNNL. "So, we are using all of the tools we have in EMSL—experimental, computational, and theoretical—to look into the materials."

Using oxygen-plasma-assisted molecular beam epitaxy, the researchers grew scandia-stabilized zirconia films on substrates. The films were examined using , electron spectroscopy, and microscopy.

However, experimental data alone was not enough, Devanathan explained. Imagine taking photos at the beginning and end of a raucous party. The photos, like the experiments, show you where you began and where you ended. However, theory shows what happened and why. Theory also allows predictions about what will happen next and what would happen under different circumstances.

So, the team applied theoretical calculations and models to the experimental data. They determined that the nanoscale, nanosecond interactions occurring in the scandia-doped cubic film conducted oxygen faster than the yttrium doping in current electrolytes.

This study provides a fundamental understanding of how ions move in scandia-doped zirconia, and shows the material is very stable. "Our integrated approach takes the science to the next level," said Dr. Theva Thevuthasan, who worked on the project and currently oversees the deposition and microfabrication capability at EMSL.

The scientists are using resources at EMSL and PNNL to provide a more detailed understanding of the atomic interactions in another promising material for fuel cells: nano layers of zirconia and ceria.

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

More information: Yu Z, R Devanathan, W Jiang, P Nachimuthu, V Shutthanandan, LV Saraf, CM Wang, SVNT Kuchibhatla, and S Thevuthasan. 2010. "Integrated Experimental and Modeling Study of Ionic Conductivity of Scandia-Stabilized Zirconia Thin Films." Solid State Ionics 181(8-10):367-371.

add to favorites email to friend print save as pdf

Related Stories

Ceramic, heal thyself

Apr 17, 2008

A new computer simulation has revealed a self-healing behavior in a common ceramic that may lead to development of radiation-resistant materials for nuclear power plants and waste storage.

Putting the fuel in fuel cells

Sep 12, 2006

Ammonia borane holds promise as a chemical compound to store and release hydrogen in fuel cell-powered vehicles – and it appears stable enough to offset some safety concerns. These findings were presented by Pacific Northwest ...

Carbon Nanotubes Make Fuel Cells Cheaper

Feb 09, 2009

( -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious ...

Argonne to study fuel cell catalysts

May 26, 2005

Argonne National Laboratory will receive $3 million over three years for basic science studies that may lead to improved catalysts for hydrogen fuel cells.

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

( —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 27, 2010
Nice work. What is the new lower temperature? The article does not specify that number.
not rated yet Apr 27, 2010
Depends on choice of formulation, but in the 500-900 C range. See http://linkinghub...10000378
1 / 5 (1) Apr 27, 2010
Diamonds and platinum. Yep, a great place to start for affordability.
not rated yet Apr 27, 2010
Read the article again, Shootist. The material shares the crystal structure of cubic zirconia (fake diamonds). SOFC's don't require platinum, either. Keep your potshots for topics you understand.
not rated yet May 03, 2010

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

( —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...