Sharing the load: Individual fibrin fibers distribute strain across a network

Apr 20, 2010

A new study shows that when it comes to networks of protein fibers, individual fibers play a substantial role in effectively strengthening an entire network of fibers. The research, published by Cell Press in the April 20th issue of the Biophysical Journal, describes a mechanism that explains how individual fibrin fibers subjected to significant strain can respond by stiffening to resist stretch and helping to equitably distribute the strain load across the network.

Fibrin is a fibrous protein that assembles into a remarkably strong mesh-like network and forms the structural framework of a blood clot. Failure of a clot can have fatal consequences. For example, if a portion of the clot breaks away and is carried downstream by the flowing blood, it can cause a stroke or heart attack. Although previous research has characterized the mechanical properties and behavior of fibrin networks on a macroscopic level, much less is known about the behavior of individual fibrin and the distribution of strain from one fiber to the next.

"We know that network strength is determined in part by the maximum strain individual fibers can withstand, so it is of particular interest to determine how the high strain and failure characteristics of single fibrin fibers affect the overall strength of the network," says senior study author Dr. Michael R. Falvo from the Department of Physics and Astronomy at the University of North Carolina at Chapel Hill. "Further, determining how strain is shared among the constituent fiber segments in a network under imposed stress is crucial to understanding failure modes of networks and their strength."

Dr. Falvo and colleagues used a combined fluorescence/atomic force microscope nanomanipulation system to stretch two dimensional fibrin networks to the point of failure while recording the strain of individual fibers. "Specifically, we observed that as fibers were stretched, they became stiffer than the surrounding fibers at lower ; this allowed the more strained, stiffer fibers, to distribute the strain load to the less strained fibers and reduce strain concentrations," explains Dr. Falvo. "So in effect, strain stiffening in the individual fibers acts to distribute strain equitably throughout the network and thereby strengthen it."

The strain concentration reduction effect described in this study may be part of an important physiological mechanism to strengthen blood clots under high shear conditions in the blood stream. The authors note that along with this physiological insight, their findings bring about a better understanding of this remarkable strengthening mechanism and may help to guide new design strategies for engineered materials.

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

More information: Falvo et al.: "Stiffening of Individual Fibrin Fibers Equitably Distributes Strain and Strengthens Networks." The Biophysical Journal, April, 2010. www.biophysics.org/

Related Stories

Exploring the molecular origin of blood clot flexibility

Jan 12, 2007

How do blood clots maintain that precise balance of stiffness for wound healing and flexibility to go with the flow? Researchers at the University of Pennsylvania School of Medicine and the School of Arts and ...

Carbon Nanotubes Toughen a Common Plastic

Apr 07, 2009

(PhysOrg.com) -- A research group from the Weizmann Institute of Science in Israel has discovered that adding carbon nanotubes to a widely used commercial plastic can greatly strengthen it. Their work is one ...

Formation of cellulose fibers tracked for the first time

Apr 20, 2006

Cellulose--a fibrous molecule found in all plants--is the most abundant biological material on Earth. It is also a favored target of renewable, plant-based biofuels research. Despite overwhelming interest, ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

15 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0