2 NASA Satellites Capture Last 3 Days of Eyjafjallajokull's Ash Plume

Apr 19, 2010
NASA's Aqua and Terra satellites captured visible images of the ash plume (brown) from the Eyjafjallajökull volcano from April 17-19 (left to right). The plume was obscured by high clouds on April 18. Credit: NASA's MODIS Rapid Response Team

NASA's Aqua and Terra satellites fly around the world every day capturing images of weather, ice and land changes. Over the last three days these satellites have provided visible and infrared imagery of the ash plume from the Eyjafjallajökull volcano in Iceland.

Eyjafjallajökull is pronounced similar to "EYE-a-fyat-la-yu-goot," and it is still spewing ash into the atmosphere. Volcanic eruptions are important sources of gases, such as sulphur dioxide (SO2) and (aerosols) in the atmosphere.

The Moderate Resolution Imaging Spectroradiometer, also known as MODIS, is an instrument that flies aboard both NASA's Aqua and Terra satellites. MODIS captures daily visible and infrared earth imagery and has provided daily images of the volcanic plume. NASA's MODIS instrument and the Atmospheric Infrared Sounder (AIRS) instrument, both of which fly on Aqua, contain sulfur dioxide (SO2) absorption channels to enhance volcanic ash detection. These applications have significantly improved upon existing satellite-based multi-spectral techniques in identifying and tracking ash clouds and estimating their height.

On Saturday, April 17 at 13:20 UTC (9:20 a.m. EDT), Aqua captured a visible image of the so clearly that in the satellite image a viewer could see the billowing cloud spewing from the volcano and blowing almost due south before turning east over the Atlantic Ocean.

On Sunday, April 18 at 12:05 UTC (8:05 a.m. EDT), NASA's flew over the volcano and captured an image of the brown mostly obscured by higher clouds. The brown plume was partly visible underneath the high clouds.

By Monday morning, April 19 at 12:50 UTC (8:50 a.m. EDT) the high clouds had cleared, and the brown line of spewed volcanic ash was visible once again blowing south, then turning east toward the United Kingdom.

The ash cloud basically consists of fine particles of pulverized rock. Volcanic ash is a rare but potentially catastrophic hazard to aviation. Encounters with volcanic ash while in flight can result in engine failure from particulate ingestion and viewing obstruction of the cockpit widescreen from etching by the acidic aerosols. Volcanic Ash Advisory Centers were established to monitor the air space in areas prone to eruptions and to issue volcanic ash warnings.

Explore further: A 5.3-million-year record of sea level and temperature

add to favorites email to friend print save as pdf

Related Stories

Volcanic blast influences climate

Aug 12, 2005

The volcanic ash cloud created by a volcanic blast can alter interactions between the atmosphere and sun, affecting climate patterns, say U.S. scientists.

Satellite data improve aviation safety

Apr 16, 2010

(PhysOrg.com) -- Thousands of planes are grounded across Europe due to the spread of volcanic ash following the recent eruption under Iceland's Eyjafjallajoekull glacier. Volcanic eruptions eject large amounts ...

New satellite image of volcanic ash cloud

Apr 15, 2010

This image, acquired today by ESA's Envisat satellite, shows the vast cloud of volcanic ash sweeping across the UK from the eruption in Iceland, more than 1000 km away.

Recommended for you

Melting during cooling period

5 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

8 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

10 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

User comments : 0

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...