Scientists go into battle to disarm superbug

Mar 19, 2010
Scientists go into battle to disarm superbug

(PhysOrg.com) -- Two recent pieces of research from Imperial College London reveal new ways of tackling the armour and weapons of Clostridium difficile, the ‘superbug’ that causes severe infections in hospital patients and the elderly.

C. difficile is a bacterium that can cause severe gut infections in humans, particularly in those taking antibiotics. Some strains of C. difficile are resistant to treatment with most antibiotics, earning them the name ‘superbugs’.

C. difficile infection is a major problem in healthcare settings and scientists are taking different approaches to tackling the problem. At Imperial, two of the groups involved in this work have published their research this month: one targets the bacterium’s protective coat and the other investigates its toxin.

The of C. difficile is helped by a thick protein coat that functions as protective armour. In the current issue of ACS , Imperial researchers announce their discovery of a chemical that interferes with the formation of this . The team, led by Dr Ed Tate from the Department of Chemistry, hopes this chemical could ultimately be developed into a drug to block the formation of the coat, leaving the way open for antibiotics to attack C. difficile.

As well as its armour, C. difficile has a potent weapon: protein toxins. These toxins, which cause the symptoms of disease in infected patients, are each made up of four molecular parts. Until now, scientists have known relatively little about the way these pieces fit together.

Professor Neil Fairweather, Dr Kate Brown and their postdoctoral researcher Dr David Albesa-Jové from the Department of Life Sciences at Imperial, reveal this in the 3D structure of the toxin, published in the current issue of the Journal of Molecular Biology. By understanding how these pieces fit together, the researchers hope it may be possible in the future to design vaccines to target the toxin.

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information:

1. "Chemical Probes of Surface Layer Biogenesis in Clostridium difficile" ACS Chemical Biology, March 2010 issue

2. "Four Distinct Structural Domains in Clostridium difficile Toxin B Visualized Using SAXS" Journal of Molecular Biology, March 2010 issue

add to favorites email to friend print save as pdf

Related Stories

Superbugs, shapes and nanotechnology

Sep 06, 2007

A common hospital superbug called Clostridium has a protective coat of armour that can self assemble when put into a test tube on its own, which may have important commercial uses in nanotechnology, according to scientists ...

C. difficile and antibiotics not necessarily linked

Oct 07, 2008

The latest study by Dr. Sandra Dial from the Research Institute of the MUHC, McGill University, and Attending Staff in the Intensive Care Unit at the Jewish General Hospital, questions the assumption held by a vast majority ...

The balance shifts

May 27, 2008

The risk of contracting a Clostridium difficile infection following operations for which a "prophylactic" antibiotic is given to prevent infection is 21 times greater now than it was just a decade ago, according to researchers ...

APIC launches first national C. difficile prevalence study

Mar 20, 2008

The Association for Professionals in Infection Control and Epidemiology (APIC) today announced a detailed strategy to combat Clostridium difficile-associated disease (CDAD). The initiative begins with the first national prevalence ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.