Scientists go into battle to disarm superbug

Mar 19, 2010
Scientists go into battle to disarm superbug

(PhysOrg.com) -- Two recent pieces of research from Imperial College London reveal new ways of tackling the armour and weapons of Clostridium difficile, the ‘superbug’ that causes severe infections in hospital patients and the elderly.

C. difficile is a bacterium that can cause severe gut infections in humans, particularly in those taking antibiotics. Some strains of C. difficile are resistant to treatment with most antibiotics, earning them the name ‘superbugs’.

C. difficile infection is a major problem in healthcare settings and scientists are taking different approaches to tackling the problem. At Imperial, two of the groups involved in this work have published their research this month: one targets the bacterium’s protective coat and the other investigates its toxin.

The of C. difficile is helped by a thick protein coat that functions as protective armour. In the current issue of ACS , Imperial researchers announce their discovery of a chemical that interferes with the formation of this . The team, led by Dr Ed Tate from the Department of Chemistry, hopes this chemical could ultimately be developed into a drug to block the formation of the coat, leaving the way open for antibiotics to attack C. difficile.

As well as its armour, C. difficile has a potent weapon: protein toxins. These toxins, which cause the symptoms of disease in infected patients, are each made up of four molecular parts. Until now, scientists have known relatively little about the way these pieces fit together.

Professor Neil Fairweather, Dr Kate Brown and their postdoctoral researcher Dr David Albesa-Jové from the Department of Life Sciences at Imperial, reveal this in the 3D structure of the toxin, published in the current issue of the Journal of Molecular Biology. By understanding how these pieces fit together, the researchers hope it may be possible in the future to design vaccines to target the toxin.

Explore further: Oat breakfast cereals may contain a common mold-related toxin

More information:

1. "Chemical Probes of Surface Layer Biogenesis in Clostridium difficile" ACS Chemical Biology, March 2010 issue

2. "Four Distinct Structural Domains in Clostridium difficile Toxin B Visualized Using SAXS" Journal of Molecular Biology, March 2010 issue

add to favorites email to friend print save as pdf

Related Stories

Superbugs, shapes and nanotechnology

Sep 06, 2007

A common hospital superbug called Clostridium has a protective coat of armour that can self assemble when put into a test tube on its own, which may have important commercial uses in nanotechnology, according to scientists ...

C. difficile and antibiotics not necessarily linked

Oct 07, 2008

The latest study by Dr. Sandra Dial from the Research Institute of the MUHC, McGill University, and Attending Staff in the Intensive Care Unit at the Jewish General Hospital, questions the assumption held by a vast majority ...

The balance shifts

May 27, 2008

The risk of contracting a Clostridium difficile infection following operations for which a "prophylactic" antibiotic is given to prevent infection is 21 times greater now than it was just a decade ago, according to researchers ...

APIC launches first national C. difficile prevalence study

Mar 20, 2008

The Association for Professionals in Infection Control and Epidemiology (APIC) today announced a detailed strategy to combat Clostridium difficile-associated disease (CDAD). The initiative begins with the first national prevalence ...

Recommended for you

Researchers bring clean energy a step closer

Feb 27, 2015

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

The construction of ordered nanostructures from benzene

Feb 27, 2015

A way to link benzene rings together in a highly ordered three-dimensional helical structure using a straightforward polymerization procedure has been discovered by researchers from RIKEN Center for Sustainable ...

Superatomic nickel core and unusual molecular reactivity

Feb 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities ...

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.