Catastrophic flooding may be more predictable after researchers build a mini river delta

Mar 16, 2010
A satellite image of the Kosi fan avulsion in India during the 2008 flood. Credit: NASA Earth Observatory

(PhysOrg.com) -- An interdisciplinary team of physicists and geologists led by the University of Pennsylvania has made a major step toward predicting where and how large floods occur on river deltas and alluvial fans.

In a laboratory, researchers created a miniature that replicates flooding patterns seen in natural rivers, resulting in a mathematical model capable of aiding in the prediction of the next catastrophic flood.

The results appear in the current issue of .

Slow deposition of sediment within rivers eventually fills channels, forcing water to spill into surrounding areas and find a new, steeper path. The process is called avulsion. The result, with the proper conditions, is catastrophic flooding and permanent relocation of the river channel.

The goal of the Penn research was to improve prediction of why and where such flooding will occur and to determine how this avulsion process builds deltas and fans over geologic time.

Research was motivated by the Aug. 18, 2008, flooding of the Kosi River fan in northern India, where an artificial embankment was breached and the resulting floodwaters displaced more than a million people. Looking at satellite pictures, scientists from Penn and University of Minnesota Duluth noticed that floodwaters principally filled abandoned channel paths.

Meredith Reitz, lead author of the study and a graduate student in the Department of Physics and Astronomy in Penn's School of Arts and Sciences, conducted a set of four laboratory experiments to study the avulsion process in detail. Reitz injected a mixture of water and sediment into a bathtub-sized tank and documented the formation and avulsion of river channels as they built a meter-sized delta.

"Reducing the scale of the system allows us to speed up time," Reiz said. "We can observe processes in the lab that we could never see in nature."

The laboratory experiments showed flooding patterns that were remarkably similar to the Kosi fan and revealed that flooding and channel relocation followed a repetitive cycle.

Researchers used black sediment to represent large grains, or "gravel" in rivers, and white sediment as "sand" to create a model of an alluvial fan. Credit: University of Pennsylvania

One major finding was that the formation of a river channel on a delta followed a random path; however, once a network of channels was formed, avulsion consistently returned flow to these same channels, rather than creating new ones. An additional important finding was that the average frequency of flooding was determined by how long it took to fill a channel with sediment. Researchers constructed a mathematical model incorporating these two ideas, which was able to reproduce the statistical behavior of flooding.

"Avulsions on river deltas and fans are like earthquakes," said Douglas Jerolmack, director of the Sediment Dynamics Laboratory in the Department of Earth and Environmental Science at Penn and a co-author of the study. "It is impossible to predict exactly where and when they will occur, but we might be able to predict approximately how often they will occur and which areas are most vulnerable. Just as earthquakes occur along pre-existing faults, flooding occurs along pre-existing channel paths. If you want to know where floodwaters will go, find the old channels."

The authors derived a simple method for estimating the recurrence interval of catastrophic flooding on real deltas. When used in conjunction with satellite images and topographic maps, this work will allow for enhanced hazard prediction. Such prediction is needed to protect the hundreds of millions of people who are threatened by flooding on river deltas and alluvial fans. The work could also help in exploration for oil reservoirs, because sandy river channels are an important source of hydrocarbons.

Explore further: Mexico's Volcano of Fire blows huge ash cloud

More information: www.agu.org/contents/journals/… ode=GL&sortBy=author

Related Stories

Three Gorges Dam shrinking Yangtze delta

May 21, 2007

Chinese scientists have determined how China's Three Gorges Dam -- the world's largest dam -- affects downstream sediment delivery in the Yangtze River.

Gulf bay double whammy: rising seas, dammed rivers

Oct 23, 2006

New research finds that every U.S Gulf Coast bay in Texas and Louisiana is vulnerable to significant flooding and expansion within the coming century due to a combination of rising seas and reduced silt flowing from dammed ...

Recommended for you

Erosion may trigger earthquakes

Nov 21, 2014

Researchers from laboratories at Géosciences Rennes (CNRS/Université de Rennes 1), Géosciences Montpellier (CNRS/Université de Montpellier 2) and Institut de Physique du Globe de Paris (CNRS/IPGP/Université Paris Diderot), ...

Strong undersea earthquake hits eastern Indonesia

Nov 21, 2014

A strong undersea earthquake hit off the coast of eastern Indonesia on Friday, but there were no immediate reports of injuries or serious damage and officials said it was unlikely to trigger a tsunami.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.