Researchers improve production of chemicals from wood waste

Mar 10, 2010

Researchers from Delft University of Technology in the Netherlands have succeeded in making a significant leap forward in the production of biochemicals and biofuels from waste wood. They discovered that the bacterium Cupriavidus basilensis breaks down harmful by-products which are produced when sugars are released from wood. They also managed to incorporate the degradation process in bacteria which are in common industrial use.

This breakthrough does away with the need to resort to costly and environmentally unfriendly methods for removing by-products, thereby boosting the appeal of waste wood as a sustainable resource. The research results were published on 2 March in the US journal , USA (PNAS).

The use of wood or plant waste in the production of chemicals and biofuels such as bioethanol has the advantage that such do not compete with food production. However, the use of these so-called "second generation raw materials" is not yet ideal. Sugars found in wood in the form of lignocelluloses are not naturally well digested by the micro-organisms which convert biomass into usable raw materials. First these complex sugars have to be released and broken down into digestible units. This process gives rise to harmful by-products, including furans, which can have a strong inhibiting effect on the .

Researchers Frank Koopman and Nick Wierckx discovered that the bacterium Cupriavidus basilensis is capable of breaking furans down into harmless waste products, while leaving the wood sugars untouched. Together with their supervisors, Koopman and Wierckx unlocked the secrets of the entire degradation process in the bacterium, identifying the genes and enzymes involved. In addition, they succeeded in introducing this entire degradation process into the Pseudomonas putida, an organism frequently used in industrial biotechnology, and which is not naturally capable of breaking down furans.

Supervisor Han de Winde, Professor of Industrial Microbiology at TU Delft's Biotechnology Department takes up the story: "The fact that we now have a process for breaking down furans, not to mention one that can be successfully incorporated into other organisms, paves the way for removing these kinds of compounds during the production of second-generation chemicals and fuels from waste wood. This enables us to avoid the costly and environmentally unfriendly methods which are currently used to remove furans. That makes using wood waste as a sustainable raw material a much more attractive proposition."

The research by Koopman, Wierckx, Ruijssenaars and De Winde forms part of the B-BASIC consortium. B-BASIC (which stands for Bio-based Sustainable Industrial Chemistry) is an NWO-ACTS research consortium in which Dutch universities and research institutes collaborate with industrial partners. The programme is geared towards developing new concepts for the sustainable production of energy and chemicals. The technologies generated by B-BASIC offer major benefits to society, such as cleaner production, waste recycling and a more competitive market position. On this project, the consortium collaborated with research institute TNO's working group on bioconversion.

Explore further: Cells build 'cupboards' to store metals

add to favorites email to friend print save as pdf

Related Stories

Producing bio-ethanol from agricultural waste a step closer

Jun 07, 2006

Research conducted by Delft University of Technology has brought the efficient production of the environmentally-friendly fuel bio-ethanol a great deal closer to fruition. The work of Delft researcher Marko Kuyper was an ...

Nature's own chemical plant

Nov 10, 2008

Petroleum is the feedstock for many products in the chemical industry. However, this fossil fuel is becoming increasingly scarce and expensive. Renewable raw materials are an alternative. But can the likes of bioethanol be ...

Sweet success for sustainable biofuel research

Jan 25, 2010

Scientists have found a way to increase fermentable sugar stores in plants which could lead to plant biomass being easier to convert into eco-friendly sustainable biofuels. Their research is highlighted in the latest issue ...

Recommended for you

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

Stunning zinc fireworks when egg meets sperm

Dec 15, 2014

Sparks literally fly when a sperm and an egg hit it off. The fertilized mammalian egg releases from its surface billions of zinc atoms in "zinc sparks," one wave after another, a Northwestern University-led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.