Carbon nanotube sensor array detects single molecules for the first time

Mar 07, 2010
Michael Strano. Photo: Donna Coveney

MIT chemical engineers have built a sensor array that, for the first time, can detect single molecules of hydrogen peroxide emanating from a single living cell.

Hydrogen peroxide has long been known to damage cells and their DNA, but scientists have recently uncovered evidence that points to a more beneficial role: it appears to act as a signaling molecule in a critical cell pathway that stimulates growth, among other functions.

When that pathway goes awry, cells can become cancerous, so understanding hydrogen peroxide's role could lead to new targets for potential , says Michael Strano, leader of the research team. Strano and his colleagues describe their new , which is made of carbon nanotubes, in the March 7 online edition of Nature Nanotechnology.

Strano's team used the array to study the flux of hydrogen peroxide that occurs when a common growth factor called EGF activates its target, a receptor known as EGFR, located on cell surfaces. For the first time, the team showed that hydrogen peroxide levels more than double when EGFR is activated.

EGF and other growth factors induce cells to grow or divide through a complex cascade of reactions inside the cell. It's still unclear exactly how hydrogen peroxide affects this process, but Strano speculates that it may somehow amplify the EGFR signal, reinforcing the message to the cell. Because hydrogen peroxide is a small molecule that doesn't diffuse far (about 200 nanometers), the signal would be limited to the cell where it was produced.

The team also found that in skin , believed to have overactive EGFR activity, the hydrogen peroxide flux was 10 times greater than in normal cells. Because of that dramatic difference, Strano believes this technology could be useful in building diagnostic devices for some types of cancer.

"You could envision a small handheld device, for example, which your doctor could point at some tissue in a minimally invasive manner and tell if this pathway is corrupted," he says.

Strano points out that this is the first time an array of sensors with single-molecule specificity has ever been demonstrated. He and his colleagues derived mathematically that such an array can distinguish "near field" molecular generation from that which takes place far from the sensor surface. "Arrays of this type have the ability to distinguish, for example, if single molecules are coming from an enzyme located on the cell surface, or from deep within the cell," says Strano.

The sensor consists of a film of carbon nanotubes embedded in collagen. Cells can grow on the collagen surface, and the collagen also attracts and traps hydrogen peroxide released by the cell. When the nanotubes come in contact with the trapped hydrogen peroxide, their fluorescence flickers. By counting the flickers, one can obtain an accurate count of the incident molecules.

Researchers in Strano's lab plan to study different forms of the EGF receptor to better characterize the flux and its role in cell signaling. They have already discovered that molecules of oxygen are consumed to generate the peroxide.

Strano's team is also working on sensors for other molecules. The team has already successfully tested sensors for nitric oxide and ATP (the molecule that carries energy within a cell). "The list of biomolecules that we can now detect very specifically and selectively is growing rapidly," says Strano, who also points out that the ability to detect and count single molecules sets carbon nanotubes apart from many other nanosensor platforms.

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

More information: "Detection of single-molecule H2O2 signaling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes," Hong Jin, Daniel Heller, Marie Kalbacova, Jong-Ho Kim, Jingqing Zhang, Ardemis Boghossian, Narendra Maheshri, Michael Strano. Nature Nanotechnology, March 7.

Related Stories

Nanotubes Sniff Out Cancer Agents in Living Cells

Jan 16, 2009

(PhysOrg.com) -- A multidisciplinary team at the Massachusetts Institute of Technology (MIT) has developed carbon nanotubes that can be used as sensors for cancer drugs and other DNA-damaging agents inside living cells. The ...

H. peroxide sensor could aid security

Aug 23, 2006

A new family of molecules used to detect hydrogen peroxide and other reactive chemicals in living cells could be a useful addition to anti-terrorist arsenals, says the University of California, Berkeley, chemist who developed ...

Hydrogen peroxide marshals immune system (w/Video)

Jun 03, 2009

When you were a kid your mom poured it on your scraped finger to stave off infection. When you got older you might have even used it to bleach your hair. Now there's another possible function for this over-the-counter colorless ...

Recommended for you

Chemically driven micro- and nanomotors

Dec 17, 2014

At least since the movie "The Fantastic Voyage" in 1966, in which a submarine is shrunk down and injected into the blood stream of a human, people have been toying with the idea of sending tiny "micromachines" ...

Pyramid nanoscale antennas beam light up and down

Dec 17, 2014

Researchers from FOM Institute AMOLF and Philips Research have designed and fabricated a new type of nanoscale antenna. The new antennas look like pyramids, rather than the more commonly used straight pillars. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.