Scientists find donut-shaped structure of enzyme involved in energy metabolism

Feb 16, 2010
In humans, proline is important for suppression of cancer, cell death and oxidation. Understanding the structure of this enzyme will help scientists better understand how it functions and develop drugs that may inhibit its catalytic function. Credit: Photo courtesy of MU News Bureau.

If subway terminals didn't exist and people had to exit subway stations to switch subway lines, transit time would increase. People also may encounter distractions, such as grabbing a cup of coffee, instead of getting on the other line. Molecules also use "terminals" to save transit time during enzyme-catalyzed processes.

Using advanced X-radiation techniques, University of Missouri researchers were able to visualize one of these terminals inside of an enzyme that degrades proline, which is an amino acid that has a central role in metabolism. In humans, proline is important for suppression of cancer, cell death and oxidation. Understanding the structure of this enzyme will help scientists better understand how it functions and develop drugs that may inhibit its catalytic function.

"This is an aesthetically interesting enzyme that resembles a donut-shaped ring," said John Tanner, professor in the Department of Chemistry and the Department of Biochemistry. "Hidden under the surface of the protein is a system of tunnels and rooms - like a subway system for molecules. The purpose of this system is to provide an interior passageway connecting the two catalytic sites of the enzyme. The movement of reactant molecules through this passageway is known as channeling, which makes enzymes efficient by isolating the reactants from other enzymatic reactions. Channeling potentially allows for decreased transit time between catalytic sites and protection from competing enzymatic reactions. The reactions occur without the reactants ever leaving the confines of the protein, which is efficient."

In the study, several proline-degrading proteins were screened for their ability to crystallize. A crystal is needed in order to perform experiments, which provide high resolution images of the protein's three-dimensional structure. Additional studies using small-angle X-ray scattering and centrifugation provided crucial information about the protein's donut shape. These techniques help researchers determine the structure and composition of the enzyme.

"The complementary methods of the X-ray crystallography, small-angle X-ray scattering, and centrifugation gave us a whole picture of the structure of the enzyme," Tanner said. "Knowing the structure of the enzyme helps us understand the function of the enzyme. Once we know an enzyme's structure, we can begin to interpret other important data, such as the enzyme's role in specific reactions, how its activity is controlled and how a drug could inhibit the ."

The study, "Crystal structure of the bifunctional Proline utilization A flavoenzyme from Bradyrhizobium japonicum," was published in Proceedings of the National Academy of Sciences this month.

Explore further: Scientists find clues to cancer drug failure

Related Stories

Unlocking the function of enzymes

Nov 06, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Study reveals the regulatory mechanism of key enzyme

Sep 20, 2007

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A ...

Recommended for you

What causes the sunlight flavour in milk?

10 hours ago

Most of us have tasted milk that has been left in the sun – it has a distinctive off-flavour. The reason is that milk and other dairy products turn rancid when exposed to light.

Scientists find clues to cancer drug failure

Mar 02, 2015

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Smart crystallization

Mar 02, 2015

A novel nucleating agent that builds on the concept of molecularly imprinted polymers (MIPs) could allow crystallographers access to proteins and other biological macromolecules that are usually reluctant ...

Supersonic electrons could produce future solar fuel

Mar 02, 2015

Researchers from institutions including Lund University have taken a step closer to producing solar fuel using artificial photosynthesis. In a new study, they have successfully tracked the electrons' rapid transit through ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

callywally
not rated yet Feb 16, 2010
Speaking as a layman on the subject, I'd love to see an animation or principle sketches of the action taking place within this protein.

A question: We have folding@home.. shouldn't we be able to solve the folded 3d structure if we know the molecule's 1D structure? Another question regarding folding: Can I think of protein building as a piece-by-piece 1-dimensional puzzle, so the protein 'string' is exreted from the cell machinery in a way which makes the first parts of the protein fold before the rest of the protein is assembled? Wouldn't that profoundly influence or guide the protein folding?

Sorry, uh questions popping up while typing..

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.