NRL Develops Technique To Speed Detection Process

Feb 15, 2010

(PhysOrg.com) -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

The new device, called the Swept Wavelength Optical resonant-Raman Device (SWOrRD), illuminates a sample with a sequence of as many as 100 wavelengths and measures the spectrum of light scattered from the sample at each laser wavelength. The assembly of scattered light-spectra constitutes a two-dimensional (2D) signature of the sample from which the components of the sample can be determined, with an appropriate algorithm. A code to perform an identification in near real-time is also being developed at NRL.

According to NRL's Dr. Jacob Grun, the research team leader, "When the laser wavelengths resonate with chemical bonds of the sample being examined, then light scattered at each wavelength contains additional information about the sample's identity. The 2D signature, rich in such information, helps to identify the sample's components even when a number of different chemicals or bacteria are mixed within that sample, as they normally would be in the environment or battlefield. This is much more difficult to do if only a single laser is used for illumination. SWOrRD also opens the possibility that a single detector can be used to identify biological agents as well as chemicals and explosives."

The new technique has both civilian and military applications. Potential uses include rapid screening in hospital, public health, food and water safety, decontamination, and border security applications. For military applications, the ability to quickly detect and identify multiple threats with a single device that has a minimal supply chain and that can be reprogrammed in the field to adjust to unexpected threats is crucial for protection of troops in the field. The technique also provides a test bed on which simpler devices suitable for large-scale deployment, utilizing few laser wavelengths, can be designed and evaluated.

During their studies, the NRL research team measured 2D spectra of five bacterial species and five explosives and showed the distinguishability of the signatures. The team was able to show that with similar RNA sequences were distinguishable by this method. The team then used the new technique to measure 2D signatures of potential environmental interferents, also with positive results.

Explore further: Biology meets geometry: Describing geometry of common cellular structure

add to favorites email to friend print save as pdf

Related Stories

Tiny spectrometer offers precision laser calibration

May 11, 2007

A tiny device for calibrating or stabilizing precision lasers has been designed and demonstrated at the National Institute of Standards and Technology. The prototype device could replace table-top-sized instruments ...

ORNL nanoprobe creates world of new possibilities

Jul 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, which ...

FLASH Imaging Redux: Nano-Cinema is Born

Jul 08, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precur ...

Laser Goes Tubing for Faster Body-Fluid Tests

Apr 02, 2007

University of Rochester researchers announce in the current issue of Applied Optics a technique that in 60 seconds or less measures multiple chemicals in body fluids, using a laser, white light, and a reflective tube. The te ...

Recommended for you

High-intensity sound waves may aid regenerative medicine

1 hour ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

5 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

New world record for a neutron scattering magnet

6 hours ago

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.