Bad news for mosquitoes: Study may lead to better traps, repellents

Feb 03, 2010

Yale University researchers have found more than two dozen scent receptors in malaria-transmitting mosquitoes that detect compounds in human sweat, a finding that may help scientists to develop new ways to combat a disease that kills 1 million people annually.

These olfactory receptors in the mosquito offer scientists potential new targets for repelling, confusing or attracting into traps the that spread a disease afflicting up to 500 million people across a broad swath of the world's tropical regions, according to authors of the article published online Feb. 3 in the journal Nature.

"The world desperately needs new ways of controlling these mosquitoes, ways that are effective, inexpensive, and environmentally friendly," said John Carlson, the Eugene Higgins Professor of Molecular, Cellular, and at Yale and senior author of the study. "Some of these receptors could be excellent targets for controlling mosquito behavior."

While it has long been known that mosquitoes are attracted to human scents, just how the mosquito's detects the different of human odor has been unknown.

"Mosquitoes find us through their sense of smell, but we know very little about how they do this," Carlson said. "Here in the United States, mosquitoes are a source of annoyance, but in much of the world they're a source of death."

Carlson's lab identified the first insect odor receptors in 1999 in studies of the fruit fly. The Yale team then found an ingenious way to use the fruit fly to study how the mosquito olfactory system works: They used mutant flies that were missing an odor receptor. Under the leadership of Allison Carey, an M.D./Ph.D. candidate in Carlson's lab and lead author of the study, the researchers systematically activated genes of 72 mosquito odor receptors in fruit fly olfactory cells that lacked their own receptors. The engineered flies were then exposed to a battery of scent compounds, and the responses conferred by each receptor were analyzed. Over the course of the project, Carey recorded 27,000 electrical responses in the genetically engineered fly/mosquito olfactory system to the library of scents.

Particularly strong responses were recorded from 27 receptors - and most of these receptors responded to chemical compounds found in .

"We're now screening for compounds that interact with these receptors," Carlson said. "Compounds that jam these receptors could impair the ability of mosquitoes to find us. Compounds that excite some of these could help lure mosquitoes into traps or repel them. The best lures or repellents may be cocktails of multiple compounds."

Carey says that more knowledge about mosquito behavior and odor reception will help develop more effective traps and repellents.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

Related Stories

How Odors are sensed: A complex system clarified

Apr 12, 2006

Yale scientists have systematically plotted the responses of the entire Drosophila (fruit fly) olfactory system, providing the first multi-dimensional map of the range of odorants sensed and the regions of ...

Humans, flies smell alike, neurobiologists find

Mar 26, 2007

The nose knows – whether it’s on a fruit fly or a human. And while it would seem that how a fruit fly judges odors should differ from how a human smells, new research from Rockefeller University finds that at the neurobiological ...

Honey bee chemoreceptors found for smell and taste

Oct 25, 2006

Honey bees have a much better sense of smell than fruit flies or mosquitoes, but a much worse sense of taste, according to researchers at the University of Illinois at Urbana-Champaign.

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

fourthrocker
5 / 5 (2) Feb 03, 2010
If there was a more deserving species that should go extinct I can't think of it.