Researchers fight world hunger by mapping the soybean genome

Feb 01, 2010

In 2009, soybeans represented an almost $30 billion industry in the U.S. alone, making soybeans the second-most profitable crop next to corn. Worldwide, soybeans have been used in human foods and livestock feed for centuries and have been a key component in industrial products, such as plastics and soy biodiesel, an environmentally friendly fuel. A team of researchers, including University of Missouri researchers, recently completed a study identifying 1.1 million base pairs of DNA in the soybean genome, including more than 90 distinct traits that affect plant development, productive characteristics, disease resistance, seed quality and nutrition, which could lead to extensive crop improvements.

"The genome sequence will be a new tool for plant breeders, industrial engineers, geneticists, biochemists, technologists, nutritionists and anyone else who uses soybeans worldwide," said Henry Nguyen, director of the National Center for Biotechnology at the MU College of Agriculture, Food and Natural Resources. "With knowledge of which which soybean traits, scientists may be able to better adapt the plant to drought conditions, bringing a new cash crop and food product to poor areas of the Earth."

Funded by the U.S. Department of Energy, MU scientists, in collaboration with researchers at other institutions, mapped the to make crop improvements and provide a key reference for more than 20,000 different species of plants. Nguyen already has begun collaborating with animal science and nutrition experts to modify soybeans added to animal feeds that could increase the health value of meat. Specifically, he is looking at ways to impart certain antioxidants that are known to decrease the frequency of cancer, and proteins from soybeans into the meat. Nguyen also is studying the root system of soybeans and how they respond to drought. He's pinpointing which proteins or genes contribute to .

"Perhaps the most exciting thing that we have found for the soybean community is the gene that confirms resistance to the devastating Asian Soybean Rust disease," Nguyen said. "In countries where this rust is well established, soybean losses can range from 10 to 80 percent. Improved soybean strains resistant to the disease will greatly benefit production and increase foodstuffs around the world."

In addition to mapping the soybean genome, MU scientists have created a database of soybean transcription factors, which regulate the expression of genes and can turn genes on or off. The database, SoybeanDB, can be accessed through a web server and contains information such as protein sequences, protein family classifications and web links to other protein databases.

The genome research has been published in the January issue of Nature magazine, and Nguyen's research on soybean drought-tolerance has been published in Plant, Cell and Environment. Faculty members from the MU College of Agriculture Food and Natural Resources, College of Engineering and the Christopher S. Bond Life Sciences Center contributed to the study. Nguyen was recently elected as a Fellow of the American Association for the Advancement of Science (AAAS) for his research contributions in plant genetics and genomics and the national and international recognition of his research and leadership in plant abiotic stress, most notably in drought tolerance.

Explore further: Improving the productivity of tropical potato cultivation

add to favorites email to friend print save as pdf

Related Stories

Tool helps identify gene function in soybeans

Dec 01, 2008

In the race for bioengineered crops, sequencing the genome could be considered the first leg in a multi-leg relay. Once the sequence is complete, the baton is passed forward to researchers to identify genes' functions. A ...

Simple soybean anything but - genetically, researcher says

Dec 16, 2008

(PhysOrg.com) -- Think humans are complex creatures? Consider the lowly soybean, said a Purdue University researcher. When it comes to genetics, the soybean plant is far more intricate than that of a human, said Scott Jackson, ...

Joint Genome Institute completes soybean genome

Dec 08, 2008

The U.S. Department of Energy Joint Genome Institute (DOE JGI) has released a complete draft assembly of the soybean (Glycine max) genetic code, making it widely available to the research community to advance ...

Pathologist: No soybean rust forecast yet

May 31, 2006

Purdue University plant pathologist Greg Shaner says there's no forecast, as yet, for 2006 Midwest soybean rust, with much depending upon weather patterns.

Recommended for you

Building better soybeans for a hot, dry, hungry world

8 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Gene removal could have implications beyond plant science

9 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Chrono, the last piece of the circadian clock puzzle?

23 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...