San Andreas Fault study unearths new quake information

Jan 21, 2010
View of the "Southeast" channel of the Bidart fan, Carrizo Plain, looking downstream. The channel is offset approximately 10 m by the San Andreas fault, at the bend in the middle ground of the photo, near the pump can. Trench 18, or "T18" (foreground) was excavated to exposure sediment in the channel for mapping and radiocarbon dating. Credit: Bidart Fan San Andreas fault research team, University of California Irvine / Arizona State University

Recent collaborative studies of stream channel offsets along the San Andreas Fault by researchers at Arizona State University and UC Irvine reveal new information about fault behavior - affecting how we understand the potential for damaging earthquakes.

The researchers' findings encompasses their work at the Carrizo Plain, which is located 100 miles north of Los Angeles and site of the original "Big One" - the Fort Tejon quake of 1857. Applying a system science approach, the ASU-UCI team presents a pair of studies appearing Jan. 21 at Science Express that incorporates the most comprehensive analysis of this part of the San Andreas fault system to date.

In one of the studies, Ramon Arrowsmith, an associate professor in the School of Earth and Space Exploration in ASU's College of Liberal Arts and Sciences, and Dr. Olaf Zielke employed topographic measurements from LiDAR (Light Detection and Ranging), which provide a view of the earth's surface at a resolution at least 10 times higher than previously available, enabling the scientists to "see" and measure fault movement, or offset.

To study older earthquakes, researchers turn to offset landforms such as stream channels which cross the fault at a high angle. A once straight stream channel will have a sharp jog right along the fault and indicate that prior offset.

This highly detailed overhead view of Carrizo Plain stream channels measured the offset features linked to large earthquakes in this section of the southern San Andreas Fault.

"This virtual approach is not a substitute for going out and looking at the features on the ground," says Zielke, who earned his Ph.D. at ASU under Arrowsmith. "But it is a powerful and somewhat objective approach that is also repeatable by other scientists."

In the second study, a team led by UCI's Lisa Grant Ludwig with postdoctoral scholar Sinan Akciz and Ph.D. candidate Gabriela Noriega determined the age of offset in a few Carrizo Plain dry stream channels by studying how much the fault slipped during previous earthquakes. The distance that a fault 'slips', or moves, determines its offset.

By digging trenches across the fault, radiocarbon-dating sediment samples and studying historic and older weather data of these Carrizo Plain channels, and combining them with the LiDAR data, the researchers found something other than what scientists had thought. Instead of having the same slip repeat in characteristic ways, researchers found that slip varied from to earthquake.

"When we combine our offset measurements with estimates of the ages of the offset features determined by Lisa's team and the ages of prior earthquakes, we find that the earthquake offset from event to event in the Carrizo Plain is not constant, as is current thinking" Arrowsmith said.

"The idea of slips repeating in characteristic ways along the San Andreas Fault is very appealing, because if you can figure that out, you are on your way to forecasting earthquakes with some reasonable confidence," added Ludwig, an associate professor of public health. "But our results show that we don't understand the San Andreas Fault as well as we thought we did, and therefore we don't know the chances of earthquakes as well as we thought we knew them."

Before these studies, the M 7.8 Fort Tejon earthquake of 1857 (the most recent earthquake along the southern San Andreas Fault) was thought to have caused a 9 to 10 meter slip along the Carrizo Plain. But the data the teams acquired show that it was actually half as much, and that slip in some of the prior earthquakes may have been even less. The researchers also found that none of the past five large earthquakes in the Carrizo Plain dating back 500 years produced slip anywhere near nine meters. In fact, the maximum slip seen was about 5-6 meters, which includes the slip caused by the Fort Tejon quake.

This result changes how we think the San Andreas Fault behaves: it probably is not as segmented in its release of accumulated stress. This makes forecasting future earthquakes a bit harder because we cannot rely on the assumption of constant behavior for each section. It could mean that earthquakes are more common along the San Andreas, but some of those events are probably smaller than we had previously expected.

Since the 1857 quake, an approximate five meters of strain, or potential slip, has been building up on the San Andreas Fault in the Carrizo Plain, ready to be released in a future earthquake. In the last five earthquakes, the most slip that has been released was 5-6 meters in the big 1857 quake. This finding points to the potential of a large temblor along the southern San Andreas Fault.

"Our collaboration has produced important information about how the works. Like all science, it is pushed forward by hard work, good ideas, and new technology. I am optimistic that these results, which change how we think about how faults work, are moving us to a more subtle understanding of the complexity of the earthquake process," said Arrowsmith.

"The recent earthquake in Haiti is a reminder that a destructive earthquake can strike without warning. One thing that hasn't changed is the importance of preparedness and earthquake resistant infrastructure in seismically active areas around the globe," Ludwig added.

Explore further: Study links polar vortex chills to melting sea ice

Related Stories

Why do earthquakes stop?

Feb 06, 2008

The underlying structure of a fault determines whether an earthquake rupture will jump from one fault to another, magnifying its size and potential devastation. Understanding why some earthquakes terminate along a fault, ...

New way to monitor faults may help predict earthquakes

Oct 01, 2009

Scientists at the Carnegie Institution have found a way to monitor the strength of geologic faults deep in the Earth. This finding could prove to be a boon for earthquake prediction by pinpointing those faults that are likely ...

For earthquakes 'speed kills'

Aug 17, 2007

High-speed ruptures travelling along straight fault lines could explain why some earthquakes are more destructive than others, according to an Oxford University scientist.

Recommended for you

Tropical Storm Dolly forms, threatens Mexico

2 hours ago

Tropical Storm Dolly formed off Mexico's northeastern coast on Tuesday and headed toward landfall in Tamaulipas state, threatening to spark floods and mudslides, forecasters said.

Giant garbage patches help redefine ocean boundaries

4 hours ago

The Great Pacific Garbage Patch is an area of environmental concern between Hawaii and California where the ocean surface is marred by scattered pieces of plastic, which outweigh plankton in that part of ...

New satellite maps out Napa Valley earthquake

6 hours ago

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

Rainfall monitoring with mobile phones

6 hours ago

Agriculture, water resource management, drought and flood warnings, etc.: rainfall monitoring is vital in many areas. But the observation networks remain insufficient. This is not the case for antennas for ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

rmuldavin
1 / 5 (1) Jan 21, 2010
Starting with the earth iron core reported to be to hot to sustain a magnetic field, and the thin zerconium liquit and magnet coating, and above a host of labeled crusts, plastic to hard, the need to avoid and predict future earthquakes become important.

The sun's solar winds, said to be mostly the separation of the electrons from the hydrogen nuclii, and the electrons depositing at the North Magnetic Poles (NMP) to likely end as water, while the positive hydrogen nuclii ending at the South Magnet Poles (SMP), the SWP builds a solid cap, which expands and as it gets towards the Inertial Equator (IE) and therefore breaks up into pieces, and as it moves towards the NMP begins to collide, eventually invaginating back into the plastic mantel (said to cycle every 125 million years of record, some 5 cycles so far), the result is that the entire earth's volume and mass is expanding, the almost mathmatical N/S seam, from Iceland to Anartical, opens up with the E/W expanding seams showing.
Nartoon
2.5 / 5 (2) Jan 22, 2010
"The recent earthquake in Haiti is a reminder that a destructive earthquake can strike without warning."

This depends what you mean by warning, if you mean exact prediction of a quake you're right, but if I remember right, the USGS warned Haiti 2 years ago that a major earthquake was possible they sure didn't prepare an emergency plan in the last 2 years did they?