Jurassic 'burn-down' events and organic matter richness in the Kimmeridge Clay Formation

Jan 19, 2010
Monika Kodrans-Nsiah inspects an exposed section of the Kimmeridge Clay Formation on Dorset's "Jurassic Coast." Credit: Ian Harding (NOCS)

The sediments of the Kimmeridge Clay Formation were deposited during the Late Jurassic between around 160 and 145 million years ago, the age of the reptiles. They are the main oil source rock in the North Sea. However, within this unit beds rich in organic matter are interspersed with organic-poor sediments. New evidence demonstrates that organic-poor sediments were probably caused by post-depositional loss of organic matter during so-called 'burn-down' events.

The Kimmeridge Clay Formation is named after the English village of Kimmeridge on Dorset's 'Jurassic Coast', a favourite haunt of hunters. The sediments comprising the formation, which is particularly well exposed here, were probably deposited in shallow marine environment with an average water depth of 50-100 metres.

"We were particularly interested in the transition between organic-rich and organic-poor sediments," said Dr Ian Harding of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton (NOCS), and a member of the team that investigated the underlying processes.

A long-held hypothesis is that the organic-rich beds were the result of elevated planktonic productivity in sunlit surface waters, possibly accentuated by enhanced preservation of the resulting organic matter by the oxygen-depleted bottom waters resulting from this excess productivity.

A second possibility was that a cyclic rise and fall of the interface between oxygenated and oxygen-depleted waters was responsible for the transition between organic-rich and organic poor sediments. According to this theory, when oxygenated waters reached the seabed, organic matter already deposited would have been oxidised and degraded. These post-depositional 'burn down' events could have alternated with periods during which the bottom waters had little oxygen, favouring preservation of organic matter.

"The first theory emphasises changes in the amount of organic matter reaching the seabed, while the 'burn-down' theory puts more weight on the relative dominance of preservation or degradation after it has got there," said Dr Harding.

To distinguish between these two theories, he and colleagues from the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, analysed the chemical composition and organic content of a core from a borehole in Swanworth Quarry in Dorset, originally drilled as part of the Natural Environment Research Council (NERC) Rapid Global Geological Events Project run by NOCS' Prof. John Marshall.

Monika Kodrans-Nsiah, a PhD student jointly supervised by Dr Harding and Dr Karin Zonneveld (Bremen) was responsible for analysing the fossilised organic cysts of various species of dinoflagellate, a group of tiny aquatic organisms, found in the sediments. Different dinoflagellate species are known to be adapted to different environmental conditions, so studying the distribution of 'dinocyst' fossils helps reconstruct past environments.

The lower part of the core was rich in organic carbon, with abundant dinocysts, and its chemical composition was indicative of anoxic conditions, implying that sediments were deposited and preserved in an oxygen-deficient environment.

However, the chemical composition of the uppermost sediments indicated the presence of oxygenated water when they were deposited. This transition was sudden, occurring at a drilling depth of 122.37 metres, but changes in organic content and dinocyst distributions were more gradual.

"It looks likely that influxes of well-oxygenated bottom water caused the oxidation and degradation of organic matter and cysts after they were deposited," said Dr Harding: "This would explain the gradual reduction in the amount of above the transition, and provide support for the idea of 'burn-down' events during the Jurassic."

Explore further: First Swedish hard-rock diamonds discovered

More information: M. Kodrans-Nsiah et al. Are the Kimmeridge Clay deposits affected by "burn-down" events? Palynological and geochemical studies on a 1 metre long section from the Upper Kimmeridge Clay Formation (Dorset, UK). Sedimentary Geology 222, 301-313 (2009).

Provided by National Oceanography Centre, Southampton

4.5 /5 (4 votes)

Related Stories

No oxygen in Eastern Mediterranean bottom-water

Sep 24, 2008

Research from Utrecht University shows that there is an organic-rich bed of sediment in the floor of the Eastern Mediterranean. This bed formed over a period of about 4000 years under oxygen-free bottom-water ...

Ecosystem In Suspended Animation

Mar 02, 2006

Deeply buried ocean sediments may house populations of tiny organisms that have extremely low maintenance energy needs and population turnover rates of anywhere from 200 to 2,000 years, according to an international team ...

Recommended for you

First Swedish hard-rock diamonds discovered

6 minutes ago

An Uppsala-led research group has presented the first verified discovery of diamonds in Swedish bedrock. The diamonds are small, but provide important clues to the geological evolution of rocks.

Harnessing crowds to analyze clouds

26 minutes ago

(Phys.org) —When it comes to analyzing hurricanes and other tropical cyclones, lack of data isn't the problem. Scientists have 30 years' worth of satellite images of these massive storms. However, what ...

NASA image: Smoke and haze over China

22 hours ago

Smoke and haze hang over a large portion of eastern China in this image captured by the Aqua satellite on October 29, 2014. China uses the method of "slash and burn" agriculture to rid their fields of leftover ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.