Tying light in knots

Jan 17, 2010
The coloured circle represents the hologram, out of which the knotted optical vortex emerges.

(PhysOrg.com) -- The remarkable feat of tying light in knots has been achieved by a team of physicists working at the universities of Bristol, Glasgow and Southampton, UK, reports a paper in Nature Physics this week.

Understanding how to control in this way has important implications for technology used in wide a range of industries.

Dr Mark Dennis from the University of Bristol and lead author on the paper, explained: "In a light beam, the flow of light through space is similar to water flowing in a river. Although it often flows in a straight line - out of a torch, , etc - light can also flow in whirls and eddies, forming lines in space called 'optical vortices'.

"Along these lines, or optical vortices, the intensity of the light is zero (black). The light all around us is filled with these dark lines, even though we can't see them".

Optical vortices can be created with holograms which direct the flow of light. In this work, the team designed holograms using knot theory - a branch of abstract mathematics inspired by knots that occur in shoelaces and rope. Using these specially designed holograms they were able to create knots in optical vortices.

The coloured circle represents the hologram, out of which the knotted optical vortex emerges.

This new research demonstrates a physical application for a branch of mathematics previously considered completely abstract.

Professor Miles Padgett from Glasgow University, who led the experiments, said: "The sophisticated hologram design required for the experimental demonstration of the knotted light shows advanced optical control, which undoubtedly can be used in future laser devices".

"The study of knotted vortices was initiated by Lord Kelvin back in 1867 in his quest for an explanation of atoms", adds Dennis, who began to study knotted optical vortices with Professor Sir Michael Berry at Bristol University in 2000. "This work opens a new chapter in that history."

Explore further: Imaging turns a corner

More information: Isolated optical vortex knots by Mark R. Dennis1, Robert P. King, Barry Jack, Kevin O'Holleran and Miles J. Padgett. Nature Physics, published online 17 January 2010.

Related Stories

'Smart' holograms help patients help themselves

Feb 04, 2008

Patients with diabetes, cardiac problems, kidney disorders or high blood pressure could benefit from the development of new hologram technology. The new "smart" holograms, which can detect changes in, for example, blood-glucose ...

Green light from Silicon

Apr 15, 2009

(PhysOrg.com) -- Researchers at the University of St Andrews have made a surprise discovery that the material at the heart of the microelectronics industry can emit green light.

Whales and dolphins influence new wind turbine design

Jul 08, 2008

Sea creatures have evolved over millions of years to maximise efficiency of movement through water; humans have been trying to perfect streamlined designs for barely a century. So shouldn't we be taking more ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

10 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

14 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

Apr 23, 2014

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
5 / 5 (3) Jan 17, 2010
If you were as surprised as me...
http://en.wikiped...l_vortex
sender
not rated yet Jan 17, 2010
I would like to see how these vortices interact with nanocomposite infinite charge carrier ring arrays.
in7x
not rated yet Jan 18, 2010
Can we tie any analogies together between light vortices and black holes?

It's curious, this field of study is absolutely exploding on all levels.
Crackpot
not rated yet Jan 18, 2010
Tiny knots of light, or at least of electromagnetic waves, are used to explain the elementary particles in this alternative model:

http://classicala...ons.html

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...