All smoothed out: Hydroxyl radicals remove nanoscopic irregularities on polished gold surfaces

Jan 14, 2010

(PhysOrg.com) -- The precious metal gold is the material of choice for many technical applications because it does not corrode - and because it also has interesting electrical, magnetic, and optical properties. Gold is thus one of the most important metals in the electronics industry, miniaturized optical components, and electrochemical processes.

In these applications, it is extremely important that the surface of the be completely clean and smooth. However, conventional processes not only “polish” away the undesirable irregularities, but also attack the . Fritz Scholz and a team from the Universities of Greifswald (Germany) and Warsaw (Poland) have now discovered a technique that can differentiate between the two. As the scientists report in the journal , hydroxyl radicals (OH radicals) rapidly remove all tiny on mechanically polished gold surfaces, leaving behind an extremely smooth surface.

The researchers treated gold surfaces with Fenton's reagent, which is a mixture of and iron(II) salts that releases OH radicals. It is also used to degrade organic impurities in the purification of waste water. “Actually, it was not expected that the radicals would attack a polished pure gold surface,” says Scholz, “because gold is notoriously difficult to oxidize.” The experiments demonstrated that the oxidize gold very well, though measurable dissolution continues only as long as there are still bumps on the gold surface. Though these results seem contradictory at first glance, the researchers explain that the reaction of the radicals with the highly ordered gold atoms of the completely smooth surface produces a stable layer of gold oxide, which can be reduced back to elemental gold without a significant loss of material. In the protrusions, however, the gold are less ordered and very reactive. During the oxidation, they detach themselves from the atomic structure.

“Because the protrusions are selectively removed, our method is very interesting for polishing gold surfaces for industrial applications,” says Scholz. The process may also find a use in medical technology: gold is used to replace teeth, in tissues for reconstructive surgery, and in electrode implants, such as those used for implanted hearing aids. These release tiny amounts of gold, which enters into the surrounding tissue. This apparently occurs because of an immune reaction that results in the formation of OH radicals or similar species. Pre-treatment of gold implants with Fenton's reagent could inhibit this release of gold into the body.

Explore further: Ionic liquids open door to better rare-earth materials processing

More information: Fritz Scholz, Hydroxyl Radicals Attack Metallic Gold, Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200906358

Related Stories

For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing ...

The nanoworld of corrosion

Feb 09, 2006

The effect of corrosion has an impact on about 3% of the world's Gross Domestic Product. From a positive point of view, however, chemical attack of metal surfaces may result into surface nano-structures with ...

When gold becomes a catalyst

Jun 22, 2006

Gold has always been perceived as a precious material: you win a gold medal when you prove to be the best in a competition; you only get a Gold credit card when you are a preferential customer, and the jewelry ...

Gold nuggets reveal their inner secrets

Oct 16, 2007

A study of the characteristics of gold nuggets from around Australia has overturned many years of accepted scientific wisdom on how nuggets form.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.