Mystery solved: Scientists now know how smallpox kills

Dec 22, 2009

A team of researchers working in a high containment laboratory at the Centers for Disease Control and Prevention in Atlanta, GA, have solved a fundamental mystery about smallpox that has puzzled scientists long after the natural disease was eradicated by vaccination: they know how it kills us.

In a new research report appearing online in The , researchers describe how the virus cripples immune systems by attacking molecules made by our bodies to block . This discovery fills a major gap in the scientific understanding of pox diseases and lays the foundation for the development of antiviral treatments, should or related viruses re-emerge through accident, viral evolution, or terrorist action.

"These studies demonstrate the production of an interferon binding protein by variola virus and monkeypox virus, and point at this viral anti-interferon protein as a target to develop new therapeutics and protect people from smallpox and related viruses," said Antonio Alcami, Ph.D., a collaborator on the study from Madrid, Spain. "A better understanding of how variola virus, one of the most virulent viruses known to humans, evades host defenses will help up to understand the molecular mechanisms that cause disease in other viral infections."

In a high containment laboratory at the Centers for Disease Control and Prevention in Atlanta, scientists produced the recombinant proteins from the variola virus and a similar virus that affects monkeys, causing monkeypox. The researchers then showed that cells infected with variola and monkeypox produced a protein that blocks a wide range of human interferons, which are molecules produced by our immune systems meant to stop viral replication.

"The re-emergence of pox viruses has potentially devastating consequences for people worldwide, as increasing numbers of people lack immunity to smallpox," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "Understanding exactly how pox viruses disrupt our immune systems can help us develop defenses against natural and terror-borne pox viruses."

Explore further: For cells, internal stress leads to unique shapes

More information: María del Mar Fernández de Marco, Alí Alejo, Paul Hudson, Inger K. Damon, and Antonio Alcami. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon FASEB J. doi:10.1096/fj.09-144733

add to favorites email to friend print save as pdf

Related Stories

Deadly virus strips away immune system's defensive measures

Dec 12, 2007

When the alert goes out that a virus has invaded the body, cells that have yet to be attacked prepare by "armoring" themselves for combat, attaching specific antiviral molecules to many of their own proteins to help resist ...

Penn researchers discover new mechanism for viral replication

Aug 16, 2007

Researchers at the University of Pennsylvania School of Medicine have identified a new strategy that Kaposi’s Sarcoma Associated Herpesvirus (KSHV) uses to dupe infected cells into replicating its viral genome. This allows ...

Recommended for you

For cells, internal stress leads to unique shapes

7 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

8 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

11 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...