Computer-simulated Thunderstorms with Ice Clouds Reveal Insights for Next-generation Computer Models

Dec 18, 2009
Thunderstorms in the tropics generate widespread cirrus clouds that are important in reflecting and absorbing energy. These mixing ratios for granular snow pellets (also called “soft hail”) (shades) and cloud ice (contours) from comparison testing of thunderstorm clouds in the tropics illustrate the wide discrepancy of the ice-phase cloud microphysics in current models. The melting line is marked as a thicker, red line. These types of discrepancies must be resolved for models to more accurately predict cloud influence on climate change.

(PhysOrg.com) -- Computer simulations of thunderstorms using data from a field campaign in Australia confirm that the "ice-phase" cloud processes in climate models contribute most to the wide discrepancy between model results and actual cloud measurements.  This was a key finding from PNNL scientist Dr. Yi Wang and his colleagues from a recent study.

The study revealed the most effective tool for detecting when current schemes within do not work well enough: evaluating the simplified representations of these clouds in climate models using actual measurements from field campaigns.

This finding highlights the importance of representing ice clouds properly in models, which is important to the success of the next generation of climate models and their ability to predict future climate. As high performance computing resources and technology advance, the next generation of climate models will run at much finer spatial resolutions (less than 10 km). This finer resolution permits the representation of cloud-sized phenomenon such as thunderstorms. At such high resolutions, the information gained from traditional larger-scale climate model resolutions may be invalid. These next- generation climate models will rely heavily on newer, more sophisticated means of representing clouds.

The tropics are the so called "heat engine" of the atmosphere. The clouds in the tropics have a large impact on climate, global water and energy cycles, and by affecting the amount of solar energy that reaches the Earth's surface. A better understanding of tropical clouds and their interactions with the environment will help scientists develop better climate models.

The team used data collected from the 2006 Tropical Warm Pool-International Cloud Experiment (TWP-ICE)—a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program-sponsored field campaign, which took place at the ARM Facility site in Darwin, Australia. The team conducted a suite of evaluations for three different ice-cloud-producing schemes in one of the more sophisticated of current models: the Weather Research and Forecasting model. The evaluations consisted of comparing the TWP-ICE data to corresponding model results for each of the three different ways that the model produces ice clouds.

To ensure that only the different ways that ice clouds are represented and interact with other predicted physical quantities in the models, all other possible influences and processes were treated the same during the model runs for this study. The team's evaluations using a simulated thunderstorm especially illustrated the wide discrepancy of the ice-phase-cloud microphysics in tropical clouds.

The team is working to improve the model simulation of high-layer cirrus clouds during the monsoon periods of TWP-ICE when there were clouds but not widespread rainfall. The results will be compared with TWP-ICE and satellite observations from NASA.

Explore further: Scientists make strides in tsunami warning since 2004

More information: Wang, Y., C.N. Long, L.R. Leung, J. Dudhia, S.A. McFarlane, J.H. Mather, S.J. Ghan, and X. Liu. 2009. "Evaluating Regional Cloud-Permitting Simulations of the WRF Model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006." J. Geophys. Res., 114, D21203, doi:10.1029/2009JD012729

add to favorites email to friend print save as pdf

Related Stories

The insides of clouds may be the key to climate change

Feb 17, 2007

As climate change scientists develop ever more sophisticated climate models to project an expected path of temperature change, it is becoming increasingly important to include the effects of aerosols on clouds, according ...

Cloud formation affected by human activity, study says

Sep 12, 2006

University of Toronto researchers and their collaborators have discovered that solid ammonium sulphate aerosol – an airborne particle more prevalent in continental areas - can act as a catalyst to the formation of ice clouds, ...

Study may produce better weather forecasts

Aug 11, 2005

Accurately forecasting rain reportedly will become easier thanks to a study of clouds conducted by the University of Leeds and University College London.

Recommended for you

Scientists make strides in tsunami warning since 2004

7 hours ago

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

7 hours ago

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.