Physicists see through the opaque with 'T-rays'

Dec 18, 2009

"T-rays" may make X-rays obsolete as a means of detecting bombs on terrorists or illegal drugs on traffickers, among other uses, contends a Texas A&M physicist who is helping lay the theoretical groundwork to make the concept a reality. In addition to being more revealing than X-rays in some situations, T-rays do not have the cumulative possible harmful effects.

Alexey Belyanin focuses his research on terahertz, otherwise known as THz or , which he says is the most under-developed and under-used part of the electromagnetic spectrum. It lies between microwave radiation and infrared (heat) radiation.

Belyanin, associate professor in the Texas A&M Physics Department, has collaborated with colleagues at Rice University and the National High Magnetic Field Laboratory to publish findings about their T-ray research in the renowned journal Nature Physics.

"THz radiation can penetrate through opaque dry materials. It is harmless and can be used to scan humans," Belyanin says. "Unfortunately, until recently the progress in THz technology has been hampered by a lack of suitable sources and detectors."

Belyanin and his team have offered hope: The researchers are able to control the T-rays by varying external parameters like temperature or magnetic field, making it possible to build THz sensors, cameras and other devices.

Traditionally, powerful photons from visible or near-infrared laser pulses are used to probe semiconductors, knocking electrons out of the atoms. Belyanin and collaborators use the less powerful T-rays instead, which only excite the waves in the electron gas because T-rays do not have enough energy to knock out electrons.

"This is as if instead of throwing a stone into a tank of water, which would create a lot of splashes, we gently vibrate one wall of the tank, sending a sound wave through the body of water and ripples over its surface," he explains.

By varying temperature and the magnetic field, scientists can tune the pulses and observe the behavior of the waves.

"This provides extremely valuable and unique information about the properties of the material, just like seismic waves tell you what is in the Earth's interior," the Texas A&M physicist points out.

"The highlight of our results is observations of interference of magnetoplasmons. By tiny changes in the applied magnetic field or temperature, we can make plasma waves amplify or cancel each other. This makes the whole sample either completely opaque or transparent to the incident THz radiation."

Belyanin believes the technology has important practical implications, such as in security work.

"Using THz cameras, we could detect weapons or drugs concealed on a human body, or look inside envelopes and boxes," he says. There are many other applications for THz radiation, including material studies, chemistry, biology and medicine."

Explore further: Strengthening thin-film bonds with ultrafast data collection

Provided by Texas A&M University

4.3 /5 (13 votes)
add to favorites email to friend print save as pdf

Related Stories

Terahertz-controlling device is built

Dec 04, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Terahertz imaging goes the distance

Apr 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Torch-sized devices will detect disease and weapons

Oct 10, 2005

Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications ...

Recommended for you

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 0