Behavior modification could ease concerns about nanoparticles

Dec 16, 2009
Sewage treatment plants serve as the main gateway for nanoparticles to enter the environment. Credit: Wikimedia Commons

In an advance that could help ease health and environmental concerns about the emerging nanotechnology industry, scientists are reporting development of technology for changing the behavior of nanoparticles in municipal sewage treatment plants — their main gateway into the environment. Their study was published in ACS' journal Environmental Science & Technology.

Helen Jarvie from the UK Centre for Ecology and Hydrology and colleagues note that experts predict large increases in the production of — particles less than 1/1000th the width of a human hair — in the next decade. Manufacturers already use 2 million tons of nanoparticles each year in foods, cosmetics, medicines, and other consumer products. Studies have hinted that some nanoparticles could have adverse environmental health effects. Water discharged from sewage treatment plants is the major gateway for spread of nanoparticles to the aquatic environment. Scientists thus are focusing on how nanoparticles behave in wastewater and how that gateway might be closed off.

The study simulated (primary) sewage treatment to show that coating silica nanoparticles (similar to those used in ointments, toothpaste and household cleaners) with a detergent-like material made the nanoparticles clump together into the solid residue termed sewage sludge. Sludge often is stored in landfills or recycled as agricultural fertilizer. Uncoated nanoparticles, in contrast, stayed in the water and therefore remained in the effluent stream.

As the nanoparticles are simply too small to be visualized optically, the team used neutron scattering (at the UK's ISIS Facility) to view the sewage at the nano scale. The neutrons easily penetrate the sewage 'soup' and scatter strongly from the nanoparticles, allowing their aggregation behavior to be followed with time. The study demonstrates the potential for coating or otherwise changing the surface chemistry of nanoparticles to re-route their journey through plants, the scientists say.

Explore further: Intricate algae produce low-cost biosensors

More information: "Fate of Silica Nanoparticles in Simulated Primary Wastewater Treatment", Environmental Science & Technology, pubs.acs.org/doi/full/10.1021/es901399q

add to favorites email to friend print save as pdf

Related Stories

Too much nanotechnology may be killing beneficial bacteria

Apr 29, 2008

Too much of a good thing could be harmful to the environment. For years, scientists have known about silver’s ability to kill harmful bacteria and, recently, have used this knowledge to create consumer products containing ...

Nanoparticles may pose threat to liver cells, say scientists

Apr 04, 2006

Researchers at the University of Edinburgh are to study the effects of nanoparticles on the liver. In a UK first, the scientists will assess whether nanoparticles –already found in pollution from traffic exhaust, but also ...

Study: Drugs from sewage not dangerous

Jul 14, 2006

A Canadian study has suggested adverse effects are unlikely on aquatic life from drugs passed through human waste released from sewage treatment plants.

Nanoparticle impact on plants

Dec 08, 2005

Nanoparticles of aluminum oxide, commonly found in everything from sunscreen lotions to environmental catalysts that reduce pollution, can stunt root growth in plants, although preliminary findings suggest extremely high ...

Recommended for you

Nano-forests to reveal secrets of cells

1 hour ago

Vertical nanowires could be used for detailed studies of what happens on the surface of cells. The findings are important for pharmaceuticals research, among other applications. A group of researchers from ...

Intricate algae produce low-cost biosensors

Sep 01, 2014

(Phys.org) —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

User comments : 0