Sucking Up To Survive

Dec 10, 2009 By Phillip F. Schewe and Devin Powell, ISNS
A hummingbird feeds on nectar from a thistle. Credit: | Leticia Shaddix

Shrink a human being down to the size of an insect, and you would no longer be able to sip lemonade from a straw. The forces that hold liquid together would simply be too great to overcome at that tiny scale.

Many of nature's smallest creatures sport special anatomical parts that allow them to suck up their liquid nourishment. Others exert very little pressure at all, relying on siphons that draw out fluid with minimal effort. During a recent meeting, scientists identified several animals that rely entirely on the slight pressure differences of siphons to transfer liquids -- their main -- into their bodies.


When a mosquito bites into your epidermis, it's always an adult female causing the damage. Female need the protein and iron found in blood in order to produce eggs, and are capable of extracting more than three times their original body weight in blood.

Sang Joon Lee of the Pohang University of Science and Technology in South Korea said that feeding takes place in four stages. First, the mosquito lands and inserts its bayonet-shaped stylet into the victim. Then the optimum penetration depth is determined and extraction occurs and the mosquito straightens her forelegs, retracting the stylet.

A few theoretical studies of this sequence have been made before, but detailed information about how blood actually flows from a host into a mosquito has been lacking. Lee's study examined the inside of the mosquitoes' head to measure the exact flow produced by two sets of pumps that alternate back and forth like the rhythm of a mammalian heart. Lee is the first to summarize this coordinated action, which maximizes the sucking force and regulates the movement of the blood into the insect's digestive organs.


Hummingbird’s hovering and darting movements impose a huge metabolic burden. John Bush from the Massachusetts Institute of Technology in Cambridge, Mass., argues that the crucial element of the bird’s nectar-collection system is its tongue. The average hummingbird's tongue is a little less than an inch long, twice as long as the beak.

When dipped into nectar, the tongue wraps into a cylindrical straw shape which acts as a siphon. Nectar rises quickly up the column via capillary action -- the same force that draws liquid across a paper towel -- allowing the bird to fill its tongue up to 20 times per second. After each dip the nectar is scraped free and swallowed.

Bush's computer models, the first to analyze the mechanics of this process in detail, revealed the wrapping-up of the tongue as a sort of "capillary origami" that requires little effort on the part of the bird. The tongue folds due to surface-tension forces that draw together the self-assembling siphon.

"Most drinking strategies in nature have or eventually will have industrial analogues," Bush said.


A butterfly's proboscis looks like a straw -- long, slender, and used for sipping -- but it works more like a paper towel, according to Konstantin Kornev from Clemson University in S.C. He hopes to borrow the tricks of this piece of insect anatomy to make small probes that can sample the fluid inside of cells.

Liquids appear thicker and resist suction in the butterfly's small scale world. The insect's food -- water, animal fluids, fruit juices -- have dramatically varying viscosity levels. Enormous amounts of pressure would be required to move the liquids if the insects relied on a pumping system to feed.

"No pump would support that kind of pressure," Kornev said. "The liquid would boil spontaneously."

Kornev's findings suggest that instead of pumping, butterflies draw liquid upwards using capillary action. The proboscis resembles a rolled-up paper towel, with tiny grooves that pull the liquid upwards along the edges, carrying along the bead of liquid in the middle of the tube.

Kornev was recently awarded a grant from the National Science Foundation to develop artificial probes made of nanofibers that use a similar principal to draw out the viscous liquid inside cells and examine their contents.

© 2009 Inside Science News Service


Explore further: Orchid named after UC Riverside researcher

add to favorites email to friend print save as pdf

Related Stories

Butterfly proboscis to sip cells

Nov 22, 2009

A butterfly's proboscis looks like a straw -- long, slender, and used for sipping -- but it works more like a paper towel, according to Konstantin Kornev of Clemson University. He hopes to borrow the tricks of this piece ...

Researchers to mimic nature's probes

Aug 31, 2009

The National Science Foundation has awarded Clemson University researchers $2 million to study ways to mimic the suction mechanism used by butterflies and moths to feed so that the same method can be used in medical diagnostics. ...

Stroock lab creates first synthetic tree

Sep 11, 2008

( -- In Abraham Stroock's lab at Cornell, the world's first synthetic tree sits in a palm-sized piece of clear, flexible hydrogel -- the type found in soft contact lenses.

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

4 hours ago

( —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

22 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

( —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Researchers develop new model of cellular movement

( —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...