Researchers to mimic nature's probes

August 31, 2009,

The National Science Foundation has awarded Clemson University researchers $2 million to study ways to mimic the suction mechanism used by butterflies and moths to feed so that the same method can be used in medical diagnostics. The research will help develop a new class of fiber-based devices capable of probing and transporting previously impossible-to-reach liquids, such as those drawn from a single cell or tissue.

"Right now, we have a real challenge of collecting fluids from miniscule places, such as a cell or a gland, without damaging them," said principal investigator Konstantin Kornev, associate professor in the School of and Engineering. " and moths have an amazing system in that they can adapt their proboscis, which is their long feeding tube, to accommodate hard-to-reach places. It can also adjust to the difficult flow of both thin and thick liquids. We want to engineer that same ability, and we can learn a great deal from nature."

Kornev said the goal is to develop probes for medical testing and that applications may some day include drawing DNA from a single cell. He adds that current "microfluidic devices," the instruments that transport and analyze small amounts of liquids, are not flexible and are not able to deal with a wide range of liquids.

"The bio-inspired probes we envision are like an endoscope that is used to see inside the body. It would have many tiny hairs working like an octopus' arms and grabbing many things at once. This way, we can map the tissue in question by picking and analyzing biofluids from different spots," said Kornev. "In doing this, we're taking advantage of recent progress in the field of fiber science and engineering."

Co-investigators to the project are Peter Adler, professor of entomology, soil and plant science; Kenneth Christensen, assistant professor of genetics and biochemistry; Richard Groff, assistant professor in electrical and computer engineering; and Alexey Vertegel, assistant professor of bioengineering. The research is part of an ongoing project to develop fiber-based medical devices in Clemson's School of Materials Science and Engineering and the Center for Advanced Engineering Fibers and Films.

Source: Clemson University (news : web)

Explore further: 4 universities collaborate to synthesize new materials, nanoscale devices

Related Stories

Tunable microlenses shine light on medical imaging

October 13, 2008

(PhysOrg.com) -- University of Wisconsin-Madison engineers have developed tunable liquid microlenses that can quickly scan images and record video. Integrated onto fiber-optic probes, the lenses further could reduce the invasiveness ...

Research on New Types of Optical Devices Modifies Optics

July 30, 2004

The Defense Advanced Research Projects Agency (DARPA) has awarded an $8 million, four-year, basic-research program grant to the California Institute of Technology to initiate research in photonics technologies. The technical ...

Recommended for you

A protein that self-replicates

February 22, 2018

ETH scientists have been able to prove that a protein structure widespread in nature – the amyloid – is theoretically capable of multiplying itself. This makes it a potential predecessor to molecules that are regarded ...

Newly designed molecule binds nitrogen

February 22, 2018

Wheat, millet and maize all need nitrogen to grow. Fertilisers therefore contain large amounts of nitrogenous compounds, which are usually synthesised by converting nitrogen to ammonia in the industrial Haber-Bosch process, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.