Sparkly Spiders and Photonic Fish

Dec 09, 2009

(PhysOrg.com) -- Scientists in Israel and the UK have uncovered the details of how certain fish and spiders create their iridescent scales and silvery skins.

Applying new techniques Levy-Lior and colleagues at the Weizmann Institute of Science and York University showed that similar readily available are made and arranged with great precision in the creatures’ coatings. Intriguingly, although the patterns of arrangement are quite different for the fish and spiders, both result in highly reflective systems of similar effectiveness, indicating that modern-day scientists still have much to learn from nature.


“It is astonishing how through evolution, fish and silver-colored spiders have independently succeeded in achieving light-reflecting structures with similar efficiencies, although differences in mechanism is apparent,” according to Lia Addadi, the leader of the Israeli group.

The creatures use photonic systems, periodic physical structures that control the interaction of light with matter, either by scattering it or reflecting it. Such phenomena are familiar to us in cosmetics, iridescent paints and inks, and reflective coatings on mirrors and lenses. Nature brings us photonic systems in opals, some , and . The Koi fish studied in this work is well known for its “extraordinary iridescent colors”, while the silvery spiders of the study usually lie in the province of experts.

Both fish and photonic camouflage systems are composed of layers of guanine crystals. Guanine is a common molecule in biological systems; it is most widely known as one of the components of DNA. These fish and spiders are able to make guanine crystals of very specific size and orientation to achieve the reflectivity they require. While this was known previously, there was no evidence of exactly how the systems were assembled and how they worked to reflect light. One major obstacle was the difficulty involved in studying skins and scales intact, without damaging their delicate structure. “A major breakthrough,” according to Addadi, “was in the use of a high pressure freezing and freeze-fracture techniques followed by observation with cryo-scanning electron microscopy. Nobody had used these techniques before in this system.”

Their observations showed that “in the fish, single crystalline [guanine] plates alternate with layers of cytoplasm layers. [Cytoplasm is the major component of living cells.] In contrast to fish, in the spider the thin layers are crystal doublets, held together by amorphous guanine layers. We have calculated the predicted reflectivity of these arrays and determined that both systems, although they show differences in crystals arrangement, finally reach similar efficiencies in light reflectivity.”

Prof. Peter Fratzl works in the Department of Biomaterials at the Max Planck Institute of Colloids and Interfaces and is not related to the research. According to him, “It is very surprising that fish and spiders, pertaining to completely different taxonomic groups, independently acquired through evolution the ability to generate mirror-like reflections on their skin by depositing guanine crystals. This suggests that the solution must be quite efficient and it is, therefore, extremely promising for the materials scientists to try and understand the structural principles of these photonic crystals working as (colored) mirrors.”

He notes that the structural details of the photonic systems used by fish and spiders are “quite different” and points out that “the spider, in particular, uses a physical trick to enhance the reflectivity by separating the guanine by layers of amorphous guanine…This new understanding will increase the pool of ideas which nourish the emerging research field of bio-inspired materials science where one attempts to transfer clever solutions which emerged in the course of evolution into concepts for new materials.”

More information: A. Levy-Lior, E. Shimoni, O. Schwartz, E. Gavish-Regev, D. Oron, G. Oxford, S. Weiner, L. Addadi, “Guanine Based Biogenic Photonic Crystal Arrays in and Spiders”, Advanced Functional Materials, 2009, DOI: 10.1002/adfm.200901437

Provided by Wiley (news : web)

Explore further: 'Smart' bandage emits phosphorescent glow for healing below

add to favorites email to friend print save as pdf

Related Stories

Solving the mystery of the metallic sheen of fish

Jan 14, 2008

The bright, metallic sheen of fish skin — source of endless fascination for fishermen and aquarium owners — is due to a sophisticated system of crystals that enhance light reflection and may help fish ...

Spookfish uses mirrors for eyes

Jan 07, 2009

A remarkable new discovery shows the four-eyed spookfish to be the first vertebrate ever found to use mirrors, rather than lenses, to focus light in its eyes.

The Unusual Origin of Peacock Brown

Jun 28, 2005

Many animals' colors originate from photonic crystals, which reflect specific colors of light as a result of their nanoscopic structures, rather than from pigments, which derive their colors from their chemical composition. ...

From opals to optical chips

Mar 03, 2008

Materials known as photonic crystals could form the building blocks of future optical computers and micro-scale communications devices. Scientists have developed a low-cost and versatile way to make photonic ...

Fabricating 3D Photonic Crystals

Jan 21, 2009

(PhysOrg.com) -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells PhysOrg.com. “Thi ...

Recommended for you

Researchers develop powerful, silicon-based laser

Sep 29, 2014

A silicon-based laser that lases up to a record 111°C, with a threshold current density of 200 A/cm2 and an output power exceeding 100 mW at room temperature, has been demonstrated by collaborating researcher ...

Predicting landslides with light

Sep 29, 2014

Optical fiber sensors are used around the world to monitor the condition of difficult-to-access segments of infrastructure—such as the underbellies of bridges, the exterior walls of tunnels, the feet of dams, long pipelines ...

Studies in laser physics help understand rogue waves

Sep 29, 2014

(Phys.org) —University of Auckland physicist Dr Miro Erkintalo is part of an international team investigating how lasers and optical fibres can be used to understand freakishly large waves on the ocean.

User comments : 0