Rich Ore Deposits Linked to Ancient Atmosphere

Nov 19, 2009

(PhysOrg.com) -- Much of our planet's mineral wealth was deposited billions of years ago when Earth's chemical cycles were different from today's. Using geochemical clues from rocks nearly 3 billion years old, a group of scientists including Andrey Bekker and Doug Rumble from the Carnegie Institution have made the surprising discovery that the creation of economically important nickel ore deposits was linked to sulfur in the ancient oxygen-poor atmosphere.

These ancient ores -- specifically iron-nickel sulfide deposits -- yield 10% of the world's annual nickel production. They formed for the most part between two and three billion years ago when hot magmas erupted on the ocean floor. Yet scientists have puzzled over the origin of the rich deposits. The ore minerals require sulfur to form, but neither seawater nor the magmas hosting the ores were thought to be rich enough in sulfur for this to happen.

"These nickel deposits have sulfur in them arising from an atmospheric cycle in ancient times. The isotopic signal is of an anoxic ," says Rumble of Carnegie's Geophysical Laboratory, a co-author of the paper appearing in the November 20 issue of Science.

Rumble, with lead author Andrey Bekker (formerly Carnegie Fellow and now at the University of Manitoba), and four other colleagues used advanced geochemical techniques to analyze rock samples from major ore deposits in Australia and Canada. They found that to help produce the ancient deposits, sulfur atoms made a complicated journey from , to the atmosphere, to seawater, to hot springs on the , and finally to molten, ore-producing magmas.

The key evidence came from a form of sulfur known as sulfur-33, an isotope in which atoms contain one more neutron than "normal" sulfur (sulfur-32). Both isotopes act the same in most chemical reactions, but reactions in the atmosphere in which sulfur dioxide gas molecules are split by ultraviolet light (UV) rays cause the isotopes to be sorted or "fractionated" into different reaction products, creating isotopic anomalies.

"If there is too much oxygen in the atmosphere then not enough UV gets through and these reactions can't happen," says Rumble. "So if you find these sulfur isotope anomalies in rocks of a certain age, you have information about the oxygen level in the atmosphere."

By linking the rich nickel ores with the ancient atmosphere, the anomalies in the rock samples also answer the long-standing question regarding the source of the sulfur in the ore minerals. Knowing this will help geologists track down new ore deposits, says Rumble, because the presence of and other chemical factors determine whether or not a deposit will form.

"Ore deposits are a tiny fraction of a percent of the Earth's surface, yet economically they are incredibly important. Modern society cannot exist without specialized metals and alloys," he says. "But it's all a matter of local geological circumstance whether you have a bonanza -- or a bust."

Source: Carnegie Institution

Explore further: Karina's remnants drawn into Hurricane Marie's spin

add to favorites email to friend print save as pdf

Related Stories

Sulfur signature changes thoughts on atmospheric oxygen

Aug 23, 2006

Ancient sediments that once resided on a lake bed and the ocean floor show sulfur isotope ratios unlike those found in other samples from the same time, calling into question accepted ideas about when the Earth’s atmosphere ...

Climate change and the rise of atmospheric oxygen

Mar 23, 2006

Today's climate change pales in comparison with what happened as Earth gave birth to its oxygen-containing atmosphere billions of years ago. By analyzing clues contained in rocks, scientists at the Carnegie Institution's ...

Diamonds reveal deep source of platinum deposits

Jun 11, 2008

The world's richest source of platinum and related metals is an enigmatic geological structure in South Africa known as the Bushveld Complex. This complex of ancient magmas is known to have formed some two ...

Origins of sulfur in rocks tells early oxygen story

Apr 16, 2009

(PhysOrg.com) -- Sedimentary rocks created more than 2.4 billion years ago sometimes have an unusual sulfur isotope composition thought to be caused by the action of ultra violet light on volcanically produced ...

Recommended for you

Karina's remnants drawn into Hurricane Marie's spin

37 minutes ago

Karina finally became a remnant low pressure area after roaming around in the Eastern Pacific for two weeks. Satellite data on August 27 showed that the now shapeless former hurricane was being drawn into ...

NASA image: Veld Fires in South Africa

38 minutes ago

South Africa is entering what is described by the Volunteer Wildfire Services of South Africa as "Cape Fire Season." The Eastern Cape provincial government warned residents in certain parts of the province ...

Sentinel-1 poised to monitor motion

57 minutes ago

Although it was only launched a few months ago and is still being commissioned, the new Sentinel-1A radar satellite has already shown that it can be used to generate 3D models of Earth's surface and will ...

Climate impacts of changing aerosol emissions since 1996

3 hours ago

The re-distribution of anthropogenic aerosol emissions from Europe and North America towards China and India between 1996 and 2010 has surprisingly warmed rather than cooled the global climate. This result reinforces the ...

User comments : 0