The benefits of stress ... in plants

Nov 19, 2009

Chronic stress in humans has been implicated in heart disease, weight gain, and diabetes, among a host of other health problems. Extreme environments, a source of chronic stress, present a challenge even for the hardiest organisms, and plants are no exception. Yet, some species somehow manage to survive, and even thrive, in stressful conditions.

A recent article by Dr. Yuri Springer in the November issue of the finds that certain wild flax growing in poor soils have succeeded in balancing the stress in their lives—these plants are less likely to experience infection from a fungal pathogen. Walking the fine line between the costs associated with surviving under stressful conditions and the benefits that may be derived from growing in an environment with fewer interactions with antagonistic species is a tricky balancing act.

For plants, serpentine soils are one example of an extreme environment. Serpentine soils are those that provide a stressful medium for plant growth, due to features of the , such as a rocky texture, low water-holding capacity, high levels of toxic metals, and/or low levels of necessary nutrients.

Springer assessed the prevalence of fungal infections in species of the wild flax genus. Wild flax provides a model system to study serpentine tolerance; the species exhibit a range of tolerance to soil with low levels of calcium, a necessary nutrient for plant survival. He examined the correlation between disease symptoms and tolerance to serpentine soils in the context of evolutionary relationships among the species.

Springer found that wild flax populations growing in serpentine soils displayed a reduction in . These results support the hypothesis that stressful environments may be attractive to plants because they provide a refuge from pathogens; however, the plants need to be able to survive in these extreme ecosystems. In wild flax, the fungal pathogen may have difficulty infecting plants that have low levels of calcium in their tissues due to low levels in the soil. Alternatively, the plants growing in a low nutrient soil may allocate much of their resources to defense against pathogens and herbivores due to the high costs of replacing tissue.

Based on the putative evolutionary history of the wild flaxes, tolerance to serpentine soils has evolved rapidly and repeatedly in the genus or was present in the ancestors of these wild flaxes and lost in several lineages. This is the first study to attempt to quantitatively explain how plants have evolved a specialization to serpentine soils and ultimately may help to explain floristic diversity in these unique environments.

More information: http://www.amjbot.org/cgi/content/full/96/11/2010

Source: American Journal of Botany

Explore further: What's for dinner? Rapidly identifying undescribed species in a commercial fungi packet

add to favorites email to friend print save as pdf

Related Stories

Measuring calcium in serpentine soils

Aug 19, 2008

Serpentine soils contain highly variable amounts of calcium, making them marginal lands for farming. Successful management of serpentine soils requires accurate measurement of the calcium they hold. Research published this ...

How plants manage calcium may reduce effects of acid rain

Mar 09, 2007

A new understanding of how plants manage their internal calcium levels could lead to modifying plants to avoid damage from acid rain. The pollutant disrupts calcium balance in plants by leaching significant amounts of the ...

For carnivorous plants, slow but steady wins the race

Sep 14, 2009

Like the man-eating plant in Little Shop of Horrors, carnivorous plants rely on animal prey for sustenance. Fortunately for humans, carnivorous plants found in nature are not dependent on a diet of human blood but rather ...

Can a plant be altruistic?

Nov 11, 2009

The concept of altruism has long been debated in philosophical circles, and more recently, evolutionary biologists have joined the debate. From the perspective of natural selection, altruism may have evolved because any ...

Recommended for you

User comments : 0