Engineers Will Create Planetary Rover From Retinal Implant Test Robot

Nov 11, 2009 By Pete Brown
Engineers Will Create Planetary Rover From Retinal Implant Test Robot
Cyclops is an all-wheel-drive platform that could enhance the design of visual prostheses and be adapted for autonomous planetary exploration. Credit: Caltech/Wolfgang Fink, Mark Tarbell

(PhysOrg.com) -- The research, led by Wolfgang Fink, will aid both people with visual impairments and scientists involved in planetary exploration.

When Wolfgang Fink establishes his research lab at the University of Arizona, one of his projects will be to transform a robot that tests retinal implants into a rover for autonomous planetary exploration.

Fink, the recently appointed Edward and Maria Keonjian Distinguished Professor in , recently moved to the UA from the California Institute of Technology.

At Caltech, he and other scientists created a remote-controlled robot that can simulate the "visual" experience and capacity for independent mobility of a blind person with a visual prosthesis such as an . The device is a implanted inside the eyeball and studded with electrodes that directly stimulate retinal .

Few people worldwide have been implanted with retinal prostheses, which means that opportunities to test and improve the implants are limited. There is only so much testing that people with implants can be asked to endure.

"How do you approximate what the blind can see with the implant so you can figure out how to make it better?" asked Fink. The answer is a robot called Cyclops. It is more correctly termed a mobile robotic platform, or rover, and is the first device of its kind to simulate what blind people might see with an implant and what degree of independent mobility they can attain, said Fink.

"We can use Cyclops in lieu of a blind person," Fink said. "We can equip it with a camera just like what a blind person would have with a retinal prosthesis, and that puts us in the unique position of being able to dictate what the robot receives as visual input."

Fink's belief is that it is only a short leap of the imagination - and of hardware and software - to adapt Cyclops for autonomous planetary exploration.

"In its current form, the rover is controlled wirelessly over the Internet - from anywhere in the world - by an operator using a joystick," Fink said. "The next stage is to make it self-maneuvering."

Before going extraterrestrial, however, a self-maneuvering rover would be tested as an enhancement to the existing application for blind people. If Cyclops can negotiate its way, without assistance, through a room full of furniture to find a door, then it is likely that a with a retinal prosthesis using the same optical input and subsequent could do the same.

"We have the image-processing algorithms running locally on the robot's platform, but we have to get it to the point where it has complete control of its own responses," said Fink.

After enhancing the image processing system and guidance software, some reengineering of the platform itself will make Cyclops ready for off-world exploration.

"Ultimately, the image processing system will work by anomaly detection," Fink said. "This means that it will search for anomalies - objects or events that deviate from expected norms - or for targets preprogrammed into its software. Then it will have to investigate these targets or anomalies, which means it will have to generate its own commands to navigate toward them."

As director of the Visual and Autonomous Exploration Systems Research Laboratory, which Fink will set up at UA, he will develop the rover in conjunction with other scientists and engineers in the Lunar and Planetary Laboratory and department of aerospace and mechanical engineering. "I am looking forward to testing it in the desert," Fink said.

Provided by University of Arizona (news : web)

Explore further: Telerobotics puts robot power at your fingertips

add to favorites email to friend print save as pdf

Related Stories

Robot Armada Might Scale New Worlds

Oct 28, 2009

(PhysOrg.com) -- An armada of robots may one day fly above the mountain tops of Saturn's moon Titan, cross its vast dunes and sail in its liquid lakes.

Technology to Treat Blindness Earns Award

Jul 23, 2009

Research performed at Caltech as part of a collaborative U.S. Department of Energy-funded artificial-retina project designed to restore sight to the blind has received one of R&D Magazine's 2009 R&D 100 Awards. ...

Stimulating sight: New retinal implant developed

Sep 23, 2009

(PhysOrg.com) -- Inspired by the success of cochlear implants that can restore hearing to some deaf people, researchers at MIT are working on a retinal implant that could one day help blind people regain a ...

Getting rid of the twin image that plagues holography

Jun 19, 2007

For decades, since the ability to create a holographic record was discovered, a problem has plagued the field. “In holography,” Tatiana Latychevskaia tells PhysOrg.com, “a twin image unfortunately appears. It is see ...

Recommended for you

Hoverbike drone project for air transport takes off

10 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study shows role of media in sharing life events

11 hours ago

To share is human. And the means to share personal news—good and bad—have exploded over the last decade, particularly social media and texting. But until now, all research about what is known as "social sharing," or the ...

User comments : 0