Researchers show how to divide and conquer 'social network' of cells

Nov 09, 2009
Université de Montréal scientists Stephen Michnick and Po Hien Ear have managed the feat of dividing cell networks down to their genesis. Credit: Stephen Michnick; Po Hien Ear, Université de Montréal

On Noah's Ark animals came in twos: male and female. In human bodies trillions of cells are coupled, too, and so are the molecules from which they are composed. Yet these don't come in twos, they are regrouped into indistinguishable clusters. Because these complex cell networks are the backbone of life - and illness - scientists have long searched for ways to splice cell clusters down to their original pairs.

According to a new study in the journal , Université de Montréal scientists Stephen Michnick and Po Hien Ear have managed the feat of dividing cell networks down to their genesis. The discovery could have applications for diseases such as cancer, where blood-thirsty cells could be decoupled to curb their multiplication in the human body.

"We have provided a simple way to decouple one cellular network from another," says Dr. Michnick, a Université de Montréal biochemistry professor and Canada Research Chair in Integrative Genomics. "Once decoupled, we could clearly distinguish what one network was doing versus another."

As part of their study, the researchers reproduced gene networks using baker's yeast - a cellular organism proven to resemble the critical functions of human cells. "We cut out relationships between cells to see which are crucial and which are not," explains Dr. Michnick. "We found that de-coupling permitted growth regulation. One way to attack cancer would be to find that decouple other networks (as we did), slow down its growth and weaken the illness."

More information: The article, "A general life-death selection strategy for dissecting protein functions," published in Nature Methods, was coauthored by Po Hien Ear and Stephen W. Michnick of the Université de Montréal. www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1389.html

Source: University of Montreal (news : web)

Explore further: How a plant beckons the bacteria that will do it harm

add to favorites email to friend print save as pdf

Related Stories

Not so sweet: Over-consumption of sugar linked to aging

Mar 06, 2009

We know that lifespan can be extended in animals by restricting calories such as sugar intake. Now, according to a study published in the journal PLoS Genetics, Université de Montréal scientists have discov ...

Insomnia is bad for the heart

Sep 04, 2009

Can't sleep at night? A new study published in the journal Sleep has found that people who suffer from insomnia have heightened nighttime blood pressure, which can lead to cardiac problems. The investigation, which measur ...

Scientists discover gene responsible for brain's aging

Jan 16, 2009

Will scientists one day be able to slow the aging of the brain and prevent diseases such as Alzheimer's and Parkinson's? Absolutely - once the genetic coding associated with neuronal degeneration has been unraveled.

Recommended for you

New alfalfa variety resists ravenous local pest

Apr 23, 2014

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...

New patenting guidelines are needed for biotechnology

Apr 22, 2014

Biotechnology scientists must be aware of the broad patent landscape and push for new patent and licensing guidelines, according to a new paper from Rice University's Baker Institute for Public Policy.

User comments : 0

More news stories

Breast cancer replicates brain development process

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.