Creating a six-qubit cluster state

Nov 02, 2009 By Miranda Marquit feature

(PhysOrg.com) -- Many scientists believe that quantum entanglement is required in order for effective quantum computing. Entanglement takes place when there is a connection that exists between two objects - even when they are spatially separated - that allows what happens to one to happen to the other. The link is such that each entangled object cannot be adequately described without its counterpart. So far, entangling qubits for practical use has been difficult, since scientists want to be able to entangle several qubits at once.

The idea of entangling more qubits appears to be gaining traction with a recent experiment conducted the University of Rome in Italy. Giuseppe Vallone is a member of group that was able to entangle a two-photon, six-qubit cluster state. “The degree of increases with more qubits,” Vallone tells PhysOrg.com. “If you want a bigger entanglement, you need to be able to work with more qubits. This is moving us in that direction.” The results of the experiment can be found in Physical Review Letters: “Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State.”

Vallone and his peers believe that this represents the first time a six-qubit linear cluster state built using a two-photon triple entangled state has been experimentally demonstrated. The demonstration aims at creating a hybrid method of increasing entanglement by adding more qubits, but also limiting the decoherence that comes when a greater number of is involved with the system. “If we can increase the number of particles and degrees of freedom,” Vallone explains, “you can get a more highly , which would have a number of possible uses in a possible future quantum technology.”

In order to set up the experiment, Vallone and his colleagues prepared a six-qubit state that was hyper-entangled using two photons with triple entanglement. Longitudinal momentum and were used to encode three qubits in each particle, and then a series of unitary transformations were performed in order to entangle some of the qubits. The process was an extension of work that has been done to create four-qubit states.

To make sure entanglement had taken place, measurements had to be taken. “We measured each particle with the encoded qubits, and measured their states,” Vallone says. “Entanglement is a correlation between different systems, and we were able to compare the measurements on the two photons and see that there was entanglement.”

Going forward, Vallone hopes that the number of qubits used can be increased to eight. “When you increase the qubits, the computational power grows exponentially,” Vallone says. “So it is important to see if we can get this effect with a higher number of qubits. Now that we have shown that it can be done with six, the next step is go on to eight, and then add even more qubits.” This way, he continues, it should be possible to eventually use the method for practical quantum computation. “We are trying to use the two-photon state to perform a quantum algorithm that can be seen as a proof-of-principle demonstration of a quantum computer, and I think that we will be able to get there at some point.”

More information: Ceccarelli, et. al. “Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State,” (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.103.160401.

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Physicists design zero-friction quantum engine

add to favorites email to friend print save as pdf

Related Stories

Physicists Demonstrate Qubit-Qutrit Entanglement

Feb 26, 2008

For the first time, physicists have entangled a qubit with a “qutrit” – the 3D version of the 2D qubit. Qubit-qutrit entanglement could lead to advantages in quantum computing, such as increased security and more efficient ...

Quantum Communication Over Flawed Networks may be Possible

Dec 14, 2007

If successfully implemented, quantum communication could be an extremely secure method of transmitting information – but there are major roadblocks to pass. Recently, physicists suggested a way, at least in theory, to overcome ...

Physicists Demonstrate Quantum Memory with Matter Qubits

Jul 03, 2009

(PhysOrg.com) -- For the first time, scientists have successfully operated a quantum gate between two remote particles of matter, marking an important step toward the development of a quantum computer. In ...

Recommended for you

Physicists design zero-friction quantum engine

10 hours ago

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

drklong
not rated yet Nov 03, 2009
Since only quantum waves exist, there should be no
limit to the number of waves that can be entangled.
www.e-academic.de...ves.html
sender
not rated yet Nov 04, 2009
Well just like the avagadro's constant i think sometime soon we may see the appreciable limit of wavelength modulation, the solution might be in changing the inherent quiescent properties of the substrate.