Physicists Demonstrate Qubit-Qutrit Entanglement

February 26, 2008 By Lisa Zyga feature

For the first time, physicists have entangled a qubit with a “qutrit” – the 3D version of the 2D qubit. Qubit-qutrit entanglement could lead to advantages in quantum computing, such as increased security and more efficient quantum gates, as well as enable novel tests of quantum mechanics.

The research team, composed of physicists from the University of Queensland, the University of Bristol, and the University of Waterloo, has published its results in a recent issue of Physical Review Letters. The researchers made qutrits with biphotons (two correlated photons), resulting in “biphotonic qutrits.” Then, they entangled these qutrits with photonic qubits (made with one photon) using a combination of linear optic elements and measurements.

A qutrit, just as it sounds, is the quantum information analogue of the classical trit. Due to its quantum mechanical nature, a qutrit can exist in superpositions of its three basis states. This is similar to how a qubit can exist in superpositions of its two states. Because of the qutrit’s 3D nature, though, it can carry much more information than the qubit. (A string of n classical bits holds 1n states, a string of n qubits holds 2n states, and a string of n qutrits holds 3n states.)

Many researchers have investigated the possibilities of entangling a qubit and qutrit, hoping to develop a valuable tool for improving quantum computing and exploring novel quantum phenomena, among other things. The authors’ result now makes such theoretical proposals experimentally testable.

“For me, the significance our paper is about how entangling systems to a qubit can be a great way to manipulate that system,” co-author Benjamin Lanyon of the University of Queensland told “In our example, we use this technique to dramatically extend the range of possible transforms on qutrits – these higher dimensional quantum information carriers, which offer loads of advantages, but are otherwise really difficult to handle.”

In their study, the researchers show that qubit-qutrit entanglement can be a useful resource to manipulate the difficult-to-handle qutrits. The scientists built a non-linear qutrit polarizer, which involves creation of the entanglement and destructive measurement of the qubit. The result is to temporarily remove a single qutrit state from the qutrit’s superposition.

Lanyon explains that this is an example of a measurement-induced nonlinearity (MINL), which is known to be an extremely powerful tool to manipulate qubits and realize an optical quantum computer.

“Measurements on the output of optical circuits built from only linear elements (such as beamsplitters, phase shifters and mirrors) can give rise to a non-linear evolution of the input optical field, i.e. for all intents and proposes, the photons seem to have interacted,” said Lanyon. “This is surprising, since photons do not naturally interact in these systems, and the effect is called a measurement-induced nonlinearity. In the context of our study, the MINL gives rise to the non-linear evolution required to generate entanglement and remove a single logical state from a qutrit superposition.”

He also gave a visual description.

“Consider that there are a number of different paths that the photons could take through the optical circuit,” he said. “As in the double-slit experiment with electrons, the photons take all these paths at once, and, at the output, we end up with a large superposition. Now let’s make a measurement of the whole (or part) of the output state. Certain results mean that certain paths were not taken – and therefore we can get rid of paths this way, conditional on getting certain measurement outcomes. Very clever measurements can leave you with a path history that results in entanglement.”

The researchers also propose a number of extensions to their work. For example, a pair of entangled qubit-qutrit states could be used to create qutrit-qutrit entanglement, which would first require entangling the two qubits. High-brightness single-photon sources currently in development will help with these kinds of future experiments. The researchers also propose that using MINLs as a manipulation technique is not limited to photons, but can be applied to any type of bosonic quantum information carrier.

The scientists predict that higher dimensional entanglement will have applications including optimizing security in quantum information systems, and increasing channel capacity for quantum communication, among other uses.

More information: Lanyon, B. P., Weinhold, T. J., Langford, N. K., O’Brien, J. L., Resch, K. J., Gilchrist, A., and White, A. G. “Manipulating Biphotonic Qutrits.” Physical Review Letters 100, 060504 (2008).

Copyright 2008
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Toward mass-producible quantum computers

Related Stories

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

Using graphene to create quantum bits

May 18, 2017

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits—or qubits—that are stable, meaning they are not much affected by changes in their environment. This normally needs ...

How to outwit noise in quantum communication

March 29, 2017

How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem.

Recommended for you

New technology could revolutionize 3-D printing

May 26, 2017

A technology originally developed to smooth out and pattern high-powered laser beams for the National Ignition Facility (NIF) can be used to 3-D print metal objects faster than ever before, according to a new study by Lawrence ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 27, 2008
Surely, a string of n classical bits holds 2^n states.

1^n = 1 for positive integer n.
not rated yet Feb 27, 2008
Surely, a string of n classical bits holds 2^n states.

1^n = 1 for positive integer n.

I think they are talking about superposition states...

A string of n classical bits can hold exactly 1 out of 2^n possible states at any given time. A string of n qubits can be in all 2^n states at the same time, so to speak.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.