Discovery of enzyme structure points way to creating less toxic anti-HIV drugs

Oct 15, 2009

By discovering the atomic structure of a key human enzyme, researchers at The University of Texas at Austin have pointed the way toward designing anti-HIV drugs with far less toxic side effects.

Their work was published this week in Cell.

"Many anti-HIV drugs are designed to stop the process of ," says Dr. Whitney Yin, assistant professor of chemistry and biochemistry. "That turns out to be a great thing to do to help cure infections, because it stop the processes of .

"At the same time, however, when you target such a critical process in viruses, you may also target human enzymes that perform similar functions in normal cells, and this is what causes harmful drug side effects."

Yin and her graduate student, Young-sam Lee, have solved the of an enzyme, known as Pol γ (pol gamma), that is responsible for DNA replication in human mitochondria.

When mitochondria are working normally, they produce most of the energy that sustains human . When pol gamma comes into contact with certain anti-retroviral drugs, however, it can incorporate the drug into mitochondrial DNA, and thus interfere with the normal replication process. This interferes with the ability of mitochondria to function. The consequences can range from simple nausea to bone marrow depletion to organ failure.

"Patients who are taking this class of anti-HIV drugs have suffered these drug toxicities for a long time," says Yin. "Dosages and combinations of drugs can be chosen so they don't kill you, but they still can't be used at their most effective concentrations against . However, in large part because combination therapies have become more successful and patients are living longer, toxicity has become more of an issue than before."

Although it's been known for some time that pol gamma is responsible for mediating the toxicity of the drugs, Yin says, it has been difficult to design a drug that can distinguish between HIV and pol gamma without knowing the structure of pol gamma. With the structures of both pol gamma and HIV known, the differences between the two can be exploited in the design of new drugs that will be more selective (and thus less toxic) against HIV.

"This is a unique opportunity for drug design," says Yin. "Now you have two pictures side by side. You have the viral target protein and the human protein. You know not to do anything in this region where the two proteins are similar, but rather focus in areas where they're different."

In addition to its relevance to anti-HIV drug design, Yin's research is also helping to explain how mutations in pol gamma lead to various degenerative diseases, including epilepsy, encephalopathy and Alpers' syndrome (a fatal childhood disease leading to brain and liver failure).

Source: University of Texas at Austin (news : web)

Explore further: Earliest stages of ear development involve a localized signaling cascade

add to favorites email to friend print save as pdf

Related Stories

Herpes drug inhibits HIV replication, but with a price

Nov 06, 2008

The anti-herpes drug acyclovir can also directly slow down HIV infection by targeting the reverse transcriptase (RT) enzyme, researchers report in this week's JBC. This beneficial effect does pose a risk though, as HIV-in ...

Research findings open new front in fight against AIDS virus

Apr 28, 2008

A research group supported by the National Institutes of Health (NIH) has uncovered a new route for attacking the human immunodeficiency virus (HIV) that may offer a way to circumvent problems with drug resistance. In findings ...

Clearing jams in copy machinery

Sep 19, 2005

Bacteria and humans use a number of tools to direct perhaps the most important function in cells -- the accurate copying of DNA during cell division. New research published this week in Molecular Cell from the laboratory ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.